4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- ...
4 Modelling Issues

How do you measure?

▶ Implementing and testing on representative inputs
 ▶ How do you choose your inputs?
 ▶ May be very time-consuming.
 ▶ Very reliable results if done correctly.
 ▶ Results only hold for a specific machine and for a specific set of inputs.

▶ Theoretical analysis in a specific model of computation.
 ▶ Gives asymptotic bounds like “this algorithm always runs in time $O(n^2)$”.
 ▶ Typically focuses on the worst case.
 ▶ Can give lower bounds like “any comparison-based sorting algorithm needs at least $\Omega(n \log n)$ comparisons in the worst case”.
4 Modelling Issues

Input length
The theoretical bounds are usually given by a function $f : \mathbb{N} \rightarrow \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be
- the size of the input (number of bits)
- the number of arguments

Example 1
Suppose n numbers from the interval $\{1, \ldots, N\}$ have to be sorted. In this case we usually say that the input length is n instead of e.g. $n \log N$, which would be the number of bits required to encode the input.
Model of Computation

How to measure performance

1. Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), . . .

2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, . . .

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.
Turing Machine

- Very simple model of computation.
- Only the “current” memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have quadratic lower bound.

⇒ Not a good model for developing efficient algorithms.
Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$.
- Registers hold integers.
- Indirect addressing.

Note that in the picture on the right the tapes are one-directional, and that a READ- or WRITE-operation always advances its tape.
Random Access Machine (RAM)

Operations

▶ input operations (input tape → $R[i]$)
 ▶ READ i

▶ output operations ($R[i]$ → output tape)
 ▶ WRITE i

▶ register-register transfers
 ▶ $R[j] := R[i]$
 ▶ $R[j] := 4$

▶ indirect addressing
 ▶ $R[j] := R[R[i]]$
 loads the content of the $R[i]$-th register into the j-th register
 ▶ $R[R[i]] := R[j]$
 loads the content of the j-th into the $R[i]$-th register
Random Access Machine (RAM)

Operations

▶ branching (including loops) based on comparisons

▶ jump \(x \)

jumps to position \(x \) in the program;

sets instruction counter to \(x \);

reads the next operation to perform from register \(R[x] \)

▶ jumpz \(x \ R[i] \)

jump to \(x \) if \(R[i] = 0 \)

if not the instruction counter is increased by 1;

▶ jumpi \(i \)

jump to \(R[i] \) (indirect jump);

▶ arithmetic instructions: \(+, -, \times, /\)

▶ \(R[i] := R[j] + R[k] \);

▶ \(R[i] := -R[k] \);

The jump-directives are very close to the jump-instructions contained in the assembler language of real machines.
Model of Computation

- **uniform** cost model
 Every operation takes time 1.

- **logarithmic** cost model
 The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed \(2^w\), where usually \(w = \log_2 n\).

The latter model is quite realistic as the word-size of a standard computer that handles a problem of size \(n\) must be at least \(\log_2 n\) as otherwise the computer could either not store the problem instance or not address all its memory.
4 Modelling Issues

Example 2

Algorithm 1 RepeatedSquaring(n)

1: \(r \leftarrow 2; \)
2: \textbf{for } \(i = 1 \rightarrow n \) \textbf{do}
3: \(r \leftarrow r^2 \)
4: \textbf{return } r

- running time:
 - uniform model: \(n \) steps
 - logarithmic model: \(1 + 2 + 4 + \cdots + 2^n = 2^{n+1} - 1 = \Theta(2^n) \)

- space requirement:
 - uniform model: \(\Theta(1) \)
 - logarithmic model: \(\Theta(2^n) \)
There are different types of complexity bounds:

- **best-case complexity**:
 \[
 C_{bc}(n) := \min\{C(x) \mid |x| = n\}
 \]

 Usually easy to analyze, but not very meaningful.

- **worst-case complexity**:
 \[
 C_{wc}(n) := \max\{C(x) \mid |x| = n\}
 \]

 Usually moderately easy to analyze; sometimes too pessimistic.

- **average case complexity**:
 \[
 C_{avg}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)
 \]

 More general: probability measure \(\mu\)

 \[
 C_{avg}(n) := \sum_{x \in I_n} \mu(x) \cdot C(x)
 \]
There are different types of complexity bounds:

▶ **amortized complexity:** The average cost of data structure operations over a worst case sequence of operations.

▶ **randomized complexity:** The algorithm may use random bits. Expected running time (over all possible choices of random bits) for a fixed input x. Then take the worst-case over all x with $|x| = n$.

<table>
<thead>
<tr>
<th>$C(x)$</th>
<th>cost of instance x</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>x</td>
</tr>
<tr>
<td>I_n</td>
<td>set of instances of length n</td>
</tr>
</tbody>
</table>
Bibliography

Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section.