A Fast Matching Algorithm

Algorithm 27 Bimatch-Hopcroft-Karp\((G)\)

1: \(M \leftarrow \emptyset \)
2: repeat
3: let \(P = \{P_1, \ldots, P_k\} \) be maximal set of vertex-disjoint, shortest augmenting path w.r.t. \(M \).
4: \(M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k) \)
5: until \(P = \emptyset \)
6: return \(M \)

We call one iteration of the repeat-loop a phase of the algorithm.
Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

Similar to the proof that a matching is optimal if it does not contain an augmenting path.

Consider the graph $G = (V, M \oplus M^*)$ and mark edges in this graph blue if they are in M and red if they are in M^*.

The connected components of G are cycles and paths.

Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.
Analysis Hopcroft-Karp

Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
 - Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^*.
 - The connected components of G are cycles and paths.
 - The graph contains $k \equiv |M^*| - |M|$ more red edges than blue edges.
 - Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.

Ernst Mayr, Harald Räcke
Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^*.
- The connected components of G are cycles and paths.
- The graph contains $k = |M^*| - |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.
Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^*.
- The connected components of G are cycles and paths.
- The graph contains $k = |M^*| - |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.
Analysis Hopcroft-Karp

Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^*.
- The connected components of G are cycles and paths.
- The graph contains $k \equiv |M^*| - |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.
Lemma 1

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^*.
- The connected components of G are cycles and paths.
- The graph contains $k \overset{\text{def}}{=} |M^*| - |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.
Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).

$M' \equiv M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k$.

Let P be an augmenting path in M'.

Lemma 2

The set $A \equiv M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k + 1) \ell$ edges.
Let \(P_1, \ldots, P_k \) be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. \(M \) (let \(\ell = |P_i| \)).

\[M' \overset{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k. \]

Let \(P \) be an augmenting path in \(M' \).

Lemma 2

The set \(A \equiv M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P \) contains at least \((k + 1)\ell\) edges.
Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).

$M' \overset{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k$.

Let P be an augmenting path in M'.

Lemma 2

The set $A \overset{\text{def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k + 1) \ell$ edges.
Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).

$M' \overset{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k$.

Let P be an augmenting path in M'.

Lemma 2

The set $A \overset{\text{def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k + 1)\ell$ edges.
Proof.

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least $k + 1$ vertex-disjoint augmenting paths w.r.t. M as $|M'| = |M| + k + 1$.
- Each of these paths is of length at least ℓ.
Proof.

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least $k + 1$ vertex-disjoint augmenting paths w.r.t. M as $|M'| = |M| + k + 1$.
- Each of these paths is of length at least ℓ.
Proof.

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least $k + 1$ vertex-disjoint augmenting paths w.r.t. M as $|M'| = |M| + k + 1$.
- Each of these paths is of length at least ℓ.
Lemma 3

\(P \) is of length at least \(\ell + 1 \). This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

If \(P \) does not intersect any of the \(P_1, \ldots, P_k \), this follows from the maximality of the set \(\{P_1, \ldots, P_k\} \).

Otherwise, at least one edge from \(P \) coincides with an edge from paths \(P_1, \ldots, P_k \).

This edge is not contained in \(A \).

Hence, \(|A| \leq k\ell + |P| - 1 \).

The lower bound on \(|A| \) gives \((k + 1)\ell \leq |A| \leq k\ell + |P| - 1 \), and hence \(|P| \geq \ell + 1 \).
Analysis Hopcroft-Karp

Lemma 3

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_1, \ldots, P_k, this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- Hence, $|A| \leq k \ell + |P| - 1$.
- The lower bound on $|A|$ gives $(k + 1) \ell \leq |A| \leq k \ell + |P| - 1$, and hence $|P| \geq \ell + 1$.
Lemma 3

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_1, \ldots, P_k, this follows from the maximality of the set \{P_1, \ldots, P_k\}.

- Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.

 - This edge is not contained in A.
 - Hence, $|A| \leq k\ell + |P| - 1$.

- The lower bound on $|A|$ gives $(k + 1)\ell \leq |A| \leq k\ell + |P| - 1$, and hence $|P| \geq \ell + 1$.

Lemma 3

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_1, \ldots, P_k, this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- Hence, $|A| \leq k\ell + |P| - 1$.
- The lower bound on $|A|$ gives $(k+1)\ell \leq |A| \leq k\ell + |P| - 1$, and hence $|P| \geq \ell + 1$.
Analysis Hopcroft-Karp

Lemma 3

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If P does not intersect any of the P_1, \ldots, P_k, this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.
- Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.
- This edge is not contained in A.
- Hence, $|A| \leq k\ell + |P| - 1$.

The lower bound on $|A|$ gives $(k + 1)\ell \leq |A| \leq k\ell + |P| - 1$, and hence $|P| \geq \ell + 1$.
Analysis Hopcroft-Karp

Lemma 3

P is of length at least \(\ell + 1 \). This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- If *P* does not intersect any of the \(P_1, \ldots, P_k \), this follows from the maximality of the set \{\(P_1, \ldots, P_k \)\}.

- Otherwise, at least one edge from *P* coincides with an edge from paths \{\(P_1, \ldots, P_k \)\}.

- This edge is not contained in *A*.

- Hence, \(|A| \leq k \ell + |P| - 1\).

- The lower bound on \(|A|\) gives \((k + 1)\ell \leq |A| \leq k \ell + |P| - 1\), and hence \(|P| \geq \ell + 1\).
If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.
The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.
Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.
The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.
Lemma 4
The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.
- After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \geq \sqrt{|V|}$.
- Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \leq \sqrt{|V|}$ additional augmentations.
Analysis Hopcroft-Karp

Lemma 4
The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \geq \sqrt{|V|}$.

- Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \leq \sqrt{|V|}$ additional augmentations.
Analysis Hopcroft-Karp

Lemma 5
One phase of the Hopcroft-Karp algorithm can be implemented in time $O(m)$.

construct a “level graph” G':

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- ...
- stop when a level (apart from Level 0) contains a free vertex

can be done in time $O(m)$ by a modified BFS
Analysis Hopcroft-Karp

- a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a “dead end” v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- if you reach a dead end backtrack and delete v together with its incident edges
Analysis Hopcroft-Karp
cost for searches during a phase is $\mathcal{O}(mn)$

- a search (successful or unsuccessful) takes time $\mathcal{O}(n)$
- a search deletes at least one edge from the level graph

there are at most n phases

Time: $\mathcal{O}(mn^2)$.
Analysis for Unit-capacity Simple Networks

Cost for searches during a phase is $O(m)$
- an edge/vertex is traversed at most twice

Need at most $O(\sqrt{n})$ phases
- after \sqrt{n} phases there is a cut of size at most \sqrt{n} in the residual graph
- hence at most \sqrt{n} additional augmentations required

Time: $O(m\sqrt{n})$.