A Fast Matching Algorithm

Algorithm 27 Bimatch-Hopcroft-Karp\((G) \)

1: \(M \leftarrow \emptyset \)
2: **repeat**
3: let \(\mathcal{P} = \{P_1, \ldots, P_k\} \) be maximal set of vertex-disjoint, shortest augmenting path w.r.t. \(M \).
4: \(M \leftarrow M \oplus (P_1 \cup \cdots \cup P_k) \)
5: **until** \(\mathcal{P} = \emptyset \)
6: **return** \(M \)

We call one iteration of the repeat-loop a **phase** of the algorithm.
Analysis Hopcroft-Karp

Lemma 1
Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:
- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph $G = (V, M \oplus M^*)$, and mark edges in this graph blue if they are in M and red if they are in M^*.
- The connected components of G are cycles and paths.
- The graph contains $k \overset{\text{def}}{=} |M^*| - |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.
Let P_1, \ldots, P_k be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. M (let $\ell = |P_i|$).

$M' \overset{\text{def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k$.

Let P be an augmenting path in M'.

Lemma 2

The set $A \overset{\text{def}}{=} M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k + 1)\ell$ edges.
Analysis Hopcroft-Karp

Proof.

- The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- Hence, the set contains at least $k + 1$ vertex-disjoint augmenting paths w.r.t. M as $|M'| = |M| + k + 1$.
- Each of these paths is of length at least ℓ.
Analysis Hopcroft-Karp

Lemma 3

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

▶ If P does not intersect any of the P_1, \ldots, P_k, this follows from the maximality of the set $\{P_1, \ldots, P_k\}$.

▶ Otherwise, at least one edge from P coincides with an edge from paths $\{P_1, \ldots, P_k\}$.

▶ This edge is not contained in A.

▶ Hence, $|A| \leq k\ell + |P| - 1$.

▶ The lower bound on $|A|$ gives $(k + 1)\ell \leq |A| \leq k\ell + |P| - 1$, and hence $|P| \geq \ell + 1$.
Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.
The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.
Lemma 4

The Hopcroft-Karp algorithm requires at most \(2\sqrt{|V|}\) phases.

Proof.

▶ After iteration \(\lfloor\sqrt{|V|}\rfloor\) the length of a shortest augmenting path must be at least \(\lfloor\sqrt{|V|}\rfloor + 1 \geq \sqrt{|V|}\).

▶ Hence, there can be at most \(|V|/(\sqrt{|V|} + 1)\leq\sqrt{|V|}\) additional augmentations.
Analysis Hopcroft-Karp

Lemma 5

One phase of the Hopcroft-Karp algorithm can be implemented in time $O(m)$.

construct a “level graph” G':

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- ...
- stop when a level (apart from Level 0) contains a free vertex

can be done in time $O(m)$ by a modified BFS
Analysis Hopcroft-Karp

- a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a “dead end” v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- if you reach a dead end backtrack and delete v together with its incident edges
Analysis Hopcroft-Karp

See lecture versions of the slides.
cost for searches during a phase is $\mathcal{O}(mn)$

- a search (successful or unsuccessful) takes time $\mathcal{O}(n)$
- a search deletes at least one edge from the level graph

there are at most n phases

Time: $\mathcal{O}(mn^2)$.
Analysis for Unit-capacity Simple Networks

cost for searches during a phase is $\Theta(m)$
 ▶ an edge/vertex is traversed at most twice

need at most $\Theta(\sqrt{n})$ phases
 ▶ after \sqrt{n} phases there is a cut of size at most \sqrt{n} in the residual graph
 ▶ hence at most \sqrt{n} additional augmentations required

Time: $\Theta(m\sqrt{n})$.