9 Union Find

Union Find Data Structure \(\mathcal{P} \): Maintains a partition of \textit{disjoint} sets over elements.

- \(\mathcal{P}. \text{makeset}(x) \): Given an element \(x \), adds \(x \) to the data-structure and creates a singleton set that contains only this element. Returns a locator/handle for \(x \) in the data-structure.

- \(\mathcal{P}. \text{find}(x) \): Given a handle for an element \(x \); find the set that contains \(x \). Returns a representative/identifier for this set.

- \(\mathcal{P}. \text{union}(x, y) \): Given two elements \(x \), and \(y \) that are currently in sets \(S_x \) and \(S_y \), respectively, the function replaces \(S_x \) and \(S_y \) by \(S_x \cup S_y \) and returns an identifier for the new set.
9 Union Find

Applications:

▶ Keep track of the connected components of a dynamic graph that changes due to insertion of nodes and edges.
▶ Kruskals Minimum Spanning Tree Algorithm
Algorithm 16 Kruskal-MST\((G = (V, E), w)\)

1: \(A \leftarrow \emptyset; \)
2: **for all** \(v \in V \) **do**
3: \(v.\text{set} \leftarrow P.\text{makeset}(v.\text{label}) \)
4: sort edges in non-decreasing order of weight \(w \)
5: **for all** \((u, v) \in E\) in non-decreasing order **do**
6: **if** \(P.\text{find}(u.\text{set}) \neq P.\text{find}(v.\text{set})\) **then**
7: \(A \leftarrow A \cup \{(u, v)\} \)
8: \(P.\text{union}(u.\text{set}, v.\text{set}) \)
List Implementation

- The elements of a set are stored in a list; each node has a backward pointer to the head.
- The head of the list contains the identifier for the set and a field that stores the size of the set.

▶ makeset(\(x\)) can be performed in constant time.
▶ find(\(x\)) can be performed in constant time.
List Implementation

\textbf{union}(x, y)

- Determine sets S_x and S_y.
- Traverse the smaller list (say S_y), and change all backward pointers to the head of list S_x.
- Insert list S_y at the head of S_x.
- Adjust the size-field of list S_x.
- Time: $\min\{|S_x|, |S_y|\}$.

9 Union Find
List Implementation

9 Union Find
List Implementation
List Implementation

Running times:

- \textbf{find}(x): constant
- \textbf{makeset}(x): constant
- \textbf{union}(x, y): \mathcal{O}(n), where \(n \) denotes the number of elements contained in the set system.
Lemma 1

The list implementation for the ADT union find fulfills the following amortized time bounds:

- $\text{find}(x) : O(1)$.
- $\text{makeset}(x) : O(\log n)$.
- $\text{union}(x, y) : O(1)$.
The Accounting Method for Amortized Time Bounds

- There is a bank account for every element in the data structure.
- Initially the balance on all accounts is zero.
- Whenever for an operation the amortized time bound exceeds the actual cost, the difference is credited to some bank accounts of elements involved.
- Whenever for an operation the actual cost exceeds the amortized time bound, the difference is charged to bank accounts of some of the elements involved.
- If we can find a charging scheme that guarantees that balances always stay positive the amortized time bounds are proven.
List Implementation

- For an operation whose actual cost exceeds the amortized cost we charge the excess to the elements involved.
- In total we will charge at most $\Theta(\log n)$ to an element (regardless of the request sequence).
- For each element a makeset operation occurs as the first operation involving this element.
- We inflate the amortized cost of the makeset-operation to $\Theta(\log n)$, i.e., at this point we fill the bank account of the element to $\Theta(\log n)$.
- Later operations charge the account but the balance never drops below zero.
List Implementation

makeset(x): The actual cost is \(O(1)\). Due to the cost inflation the amortized cost is \(O(\log n)\).

find(x): For this operation we define the amortized cost and the actual cost to be the same. Hence, this operation does not change any accounts. Cost: \(O(1)\).

union(x, y):
- If \(S_x = S_y\) the cost is constant; no bank accounts change.
- Otw. the actual cost is \(O(\min\{|S_x|, |S_y|\})\).
- Assume wlog. that \(S_x\) is the smaller set; let \(c\) denote the hidden constant, i.e., the actual cost is at most \(c \cdot |S_x|\).
- Charge \(c\) to every element in set \(S_x\).
Lemma 2

An element is charged at most $\lfloor \log_2 n \rfloor$ times, where n is the total number of elements in the set system.

Proof.

Whenever an element x is charged the number of elements in x’s set doubles. This can happen at most $\lfloor \log n \rfloor$ times.

□
Implementation via Trees

- Maintain nodes of a set in a tree.
- The root of the tree is the label of the set.
- Only pointer to parent exists; we cannot list all elements of a given set.
- Example:

```
10
12 5
2
6
9
3
8
14 17
7
16
19 23
```

Set system \{2, 5, 10, 12\}, \{3, 6, 7, 8, 9, 14, 17\}, \{16, 19, 23\}.
Implementation via Trees

makeset(x)

- Create a singleton tree. Return pointer to the root.
- Time: $\Theta(1)$.

find(x)

- Start at element x in the tree. Go upwards until you reach the root.
- Time: $\Theta(\text{level}(x))$, where level(x) is the distance of element x to the root in its tree. Not constant.
Implementation via Trees

To support union we store the size of a tree in its root.

union(\(x, y\))

- Perform \(a \leftarrow \text{find}(x); b \leftarrow \text{find}(y)\). Then: \(\text{link}(a, b)\).
- \(\text{link}(a, b)\) attaches the smaller tree as the child of the larger.
- In addition it updates the size-field of the new root.

- Time: constant for \(\text{link}(a, b)\) plus two find-operations.
Lemma 3
The running time (non-amortized!!!) for \texttt{find}(x) is $O(\log n)$.

Proof.

- When we attach a tree with root c to become a child of a tree with root p, then $\text{size}(p) \geq 2 \text{size}(c)$, where \text{size} denotes the value of the size-field right after the operation.
- After that the value of \text{size}(c) stays fixed, while the value of \text{size}(p) may still increase.
- Hence, at any point in time a tree fulfills $\text{size}(p) \geq 2 \text{size}(c)$, for any pair of nodes (p, c), where p is a parent of c.

\hfill \Box
Path Compression

\textbf{find}(x):

\begin{itemize}
 \item Go upward until you find the root.
 \item Re-attach all visited nodes as children of the root.
 \item Speeds up successive find-operations.
\end{itemize}

\begin{itemize}
 \item Note that the size-fields now only give an upper bound on the size of a sub-tree.
\end{itemize}
Path Compression

find(x):

- Go upward until you find the root.
- Re-attach all visited nodes as children of the root.
- Speeds up successive find-operations.

Note that the size-fields now only give an upper bound on the size of a sub-tree.

One could change the algorithm to update the size-fields. This could be done without asymptotically affecting the running time.

However, the only size-field that is actually required is the field at the root, which is always correct.

We will only use the other size-fields for the proof of Theorem 6.
Path Compression

Asymptotically the cost for a find-operation does not increase due to the path compression heuristic.

However, for a worst-case analysis there is no improvement on the running time. It can still happen that a find-operation takes time $\mathcal{O}(\log n)$.
Amortized Analysis

Definitions:

- $\text{size}(v) :=$ the number of nodes that were in the sub-tree rooted at v when v became the child of another node (or the number of nodes if v is the root).

Note that this is the same as the size of v’s subtree in the case that there are no find-operations.

- $\text{rank}(v) := \lfloor \log(\text{size}(v)) \rfloor$.

- $\Rightarrow \text{size}(v) \geq 2^{\text{rank}(v)}$.

Lemma 4

The rank of a parent must be strictly larger than the rank of a child.
Amortized Analysis

Lemma 5
There are at most $n/2^s$ nodes of rank s.

Proof.

- Let’s say a node v sees node x if v is in x’s sub-tree at the time that x becomes a child.
- A node v sees at most one node of rank s during the running time of the algorithm.
- This holds because the rank-sequence of the roots of the different trees that contain v during the running time of the algorithm is a strictly increasing sequence.
- Hence, every node sees at most one rank s node, but every rank s node is seen by at least 2^s different nodes.
Amortized Analysis

We define

\[
tow(i) := \begin{cases}
1 & \text{if } i = 0 \\
2 tω(i-1) & \text{otherwise}
\end{cases}
\]

\[
tow(i) = 2^{2^{2^{2^2}}} \text{ } i \text{ times}
\]

and

\[
log^*(n) := \min\{i \mid tow(i) \geq n\}.
\]

Theorem 6

Union find with path compression fulfills the following amortized running times:

\- makeset(x) : \Theta(log^*(n))
\- find(x) : \Theta(log^*(n))
\- union(x, y) : \Theta(log^*(n))
Amortized Analysis

In the following we assume $n \geq 2$.

rank-group:

- A node with rank $\text{rank}(v)$ is in rank group $\log^*(\text{rank}(v))$.
- The rank-group $g = 0$ contains only nodes with rank 0 or rank 1.
- A rank group $g \geq 1$ contains ranks $\text{tow}(g - 1) + 1, \ldots, \text{tow}(g)$.
- The maximum non-empty rank group is $\log^*(\lfloor \log n \rfloor) \leq \log^*(n) - 1$ (which holds for $n \geq 2$).
- Hence, the total number of rank-groups is at most $\log^* n$.
Amortized Analysis

Accounting Scheme:

- create an account for every find-operation
- create an account for every node v

The cost for a find-operation is equal to the length of the path traversed. We charge the cost for going from v to $\text{parent}[v]$ as follows:

- If $\text{parent}[v]$ is the root we charge the cost to the find-account.
- If the group-number of $\text{rank}(v)$ is the same as that of $\text{rank}(\text{parent}[v])$ (before starting path compression) we charge the cost to the node-account of v.
- Otherwise we charge the cost to the find-account.
Observations:

- A find-account is charged at most $\log^* (n)$ times (once for the root and at most $\log^* (n) - 1$ times when increasing the rank-group).
- After a node v is charged its parent-edge is re-assigned. The rank of the parent strictly increases.
- After some charges to v the parent will be in a larger rank-group. $\implies v$ will never be charged again.
- The total charge made to a node in rank-group g is at most $\text{tow}(g) - \text{tow}(g - 1) - 1 \leq \text{tow}(g)$.
Amortized Analysis

What is the total charge made to nodes?

The total charge is at most

$$\sum_{g} n(g) \cdot \text{tow}(g),$$

where $n(g)$ is the number of nodes in group g.
Amortized Analysis

For $g \geq 1$ we have

$$n(g) \leq \sum_{s=\text{tow}(g-1)+1}^{\text{tow}(g)} \frac{n}{2^s} \leq \sum_{s=\text{tow}(g-1)+1}^{\infty} \frac{n}{2^s}$$

$$= \frac{n}{2^{\text{tow}(g-1)+1}} \sum_{s=0}^{\infty} \frac{1}{2^s} = \frac{n}{2^{\text{tow}(g-1)+1}} \cdot 2$$

$$= \frac{n}{2^{\text{tow}(g-1)}} = \frac{n}{\text{tow}(g)} .$$

Hence,

$$\sum_{g} n(g) \text{ tow}(g) \leq n(0) \text{ tow}(0) + \sum_{g \geq 1} n(g) \text{ tow}(g) \leq n \log^* (n)$$
Amortized Analysis

Without loss of generality we can assume that all \texttt{makeset}-operations occur at the start.

This means if we inflate the cost of \texttt{makeset} to $\log^* n$ and add this to the node account of v then the balances of all node accounts will sum up to a positive value (this is sufficient to obtain an amortized bound).
The analysis is not tight. In fact it has been shown that the amortized time for the union-find data structure with path compression is $\Theta(\alpha(m, n))$, where $\alpha(m, n)$ is the inverse Ackermann function which grows a lot lot slower than $\log^* n$. (Here, we consider the average running time of m operations on at most n elements).

There is also a lower bound of $\Omega(\alpha(m, n))$.
Amortized Analysis

\[
A(x, y) = \begin{cases}
 y + 1 & \text{if } x = 0 \\
 A(x - 1, 1) & \text{if } y = 0 \\
 A(x - 1, A(x, y - 1)) & \text{otherwise}
\end{cases}
\]

\[
\alpha(m, n) = \min\{i \geq 1 : A(i, \lfloor m/n \rfloor) \geq \log n\}
\]

\begin{itemize}
 \item $A(0, y) = y + 1$
 \item $A(1, y) = y + 2$
 \item $A(2, y) = 2y + 3$
 \item $A(3, y) = 2^{y+3} - 3$
 \item $A(4, y) = 2^{2^{2^{\ldots^{2^{y+3}}}}} - 3$ \hspace{1cm} \text{$y+3$ times}
\end{itemize}
Bibliography

[CLRS90a] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest:
Introduction to Algorithms (1st ed.),

[CLRS90b] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (2nd ed.),

[CLRS90c] Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein:
Introduction to Algorithms (3rd ed.),
MIT Press and McGraw-Hill, 2009

[AHU74] Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman:
The Design and Analysis of Computer Algorithms,
Addison-Wesley, 1974

Union find data structures are discussed in Chapter 21 of [CLRS90b] and [CLRS90c] and in Chapter 22 of [CLRS90a]. The analysis of union by rank with path compression can be found in [CLRS90a] but neither in [CLRS90b] in nor in [CLRS90c]. The latter books contains a more involved analysis that gives a better bound than $O(\log^* n)$.

A description of the $O(\log^*)$-bound can also be found in Chapter 4.8 of [AHU74].