
7.3 AVL-Trees

Definition 1

AVL-trees are binary search trees that fulfill the following

balance condition. For every node v

|height(left sub-tree(v))− height(right sub-tree(v))| ≤ 1 .

Lemma 2

An AVL-tree of height h contains at least Fh+2 − 1 and at most

2h − 1 internal nodes, where Fn is the n-th Fibonacci number

(F0 = 0, F1 = 1), and the height is the maximal number of edges

from the root to an (empty) dummy leaf.

Ernst Mayr, Harald Räcke 159

AVL trees

Proof.

The upper bound is clear, as a binary tree of height h can only

contain
h−1∑
j=0

2j = 2h − 1

internal nodes.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 160

AVL trees

Proof (cont.)

Induction (base cases):

1. an AVL-tree of height h = 1 contains at least one internal

node, 1 ≥ F3 − 1 = 2− 1 = 1.

2. an AVL tree of height h = 2 contains at least two internal

nodes, 2 ≥ F4 − 1 = 3− 1 = 2

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 161

Induction step:

An AVL-tree of height h ≥ 2 of minimal size has a root with

sub-trees of height h− 1 and h− 2, respectively. Both, sub-trees

have minmal node number.

h− 1
h− 2

Let

gh := 1+minimal size of AVL-tree of height h .

Then

g1 = 2 = F3

g2 = 3 = F4

gh − 1 = 1+ gh−1 − 1+ gh−2 − 1 , hence

gh = gh−1 + gh−2 = Fh+2

7.3 AVL-Trees

An AVL-tree of height h contains at least Fh+2 − 1 internal nodes.

Since

n+ 1 ≥ Fh+2 = Ω
(1+√5

2

)h ,

we get

n ≥ Ω
(1+√5

2

)h ,

and, hence, h = O(logn).

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 163

7.3 AVL-Trees

We need to maintain the balance condition through rotations.

For this we store in every internal tree-node v the balance of the

node. Let v denote a tree node with left child c` and right child

cr .

balance[v] := height(Tc`)− height(Tcr) ,

where Tc` and Tcr , are the sub-trees rooted at c` and cr ,

respectively.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 164

Rotations

The properties will be maintained through rotations:

x

z

A

B C

x

z

A B

C

LeftRotate(x)

RightRotate(z)

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 165

Double Rotations

x

y

z

A

B C

D

Le
ftR

ot
at

e(
y)

RightRotate(x)

DoubleRightRotate(x)

x

y

z

A B

C

D

z

y x

A B C D

AVL-trees: Insert

ñ Insert like in a binary search tree.

ñ Let w denote the parent of the newly inserted node x.

ñ One of the following cases holds:

w

x

bal(w) = −1

w

x a

bal(w) = 0

w

xa

bal(w) = 0

w

x

bal(w) = 1

ñ If bal[w] ≠ 0, Tw has changed height; the

balance-constraint may be violated at ancestors of w.

ñ Call AVL-fix-up-insert(parent[w]) to restore the

balance-condition.

Note that before the insertion w is right
above the leaf level, i.e., x replaces a
child of w that was a dummy leaf.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 167

AVL-trees: Insert

Invariant at the beginning of AVL-fix-up-insert(v):

1. The balance constraints hold at all descendants of v.

2. A node has been inserted into Tc, where c is either the right

or left child of v.

3. Tc has increased its height by one (otw. we would already

have aborted the fix-up procedure).

4. The balance at node c fulfills balance[c] ∈ {−1,1}. This

holds because if the balance of c is 0, then Tc did not

change its height, and the whole procedure would have

been aborted in the previous step.

Note that these constraints hold for the
first call AVL-fix-up-insert(parent[w]).

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 168

AVL-trees: Insert

Algorithm 7 AVL-fix-up-insert(v)
1: if balance[v] ∈ {−2,2} then DoRotationInsert(v);
2: if balance[v] ∈ {0} return;

3: AVL-fix-up-insert(parent[v]);

We will show that the above procedure is correct, and that it will

do at most one rotation.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 169

AVL-trees: Insert

Algorithm 8 DoRotationInsert(v)
1: if balance[v] = −2 then // insert in right sub-tree
2: if balance[right[v]] = −1 then
3: LeftRotate(v);
4: else
5: DoubleLeftRotate(v);
6: else // insert in left sub-tree
7: if balance[left[v]] = 1 then
8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 170

AVL-trees: Insert

It is clear that the invariant for the fix-up routine holds as long

as no rotations have been done.

We have to show that after doing one rotation all balance

constraints are fulfilled.

We show that after doing a rotation at v:

ñ v fulfills balance condition.

ñ All children of v still fulfill the balance condition.

ñ The height of Tv is the same as before the insert-operation

took place.

We only look at the case where the insert happened into the

right sub-tree of v. The other case is symmetric.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 171

AVL-trees: Insert

We have the following situation:

v

h− 1
h+ 1

The right sub-tree of v has increased its height which results in

a balance of −2 at v.

Before the insertion the height of Tv was h+ 1.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 172

Case 1: balance[right[v]] = −1

We do a left rotation at v

Now, the subtree has height h+ 1 as before the insertion.

Hence, we do not need to continue.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 173

v

x

h− 1

h− 1

h

x

v

h− 1 h− 1
h

LeftRotate(v)

Case 2: balance[right[v]] = 1

v

x

y

h− 1

h− 1
or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1

h− 1
or
h− 2 h− 1

or
h− 2

h− 1

v x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(v)

RightRotate(x)

DoubleLeftRotate(v)

Height is h+ 1, as
before the insert.

AVL-trees: Delete

ñ Delete like in a binary search tree.

ñ Let v denote the parent of the node that has been

spliced out.

ñ The balance-constraint may be violated at v, or at ancestors

of v, as a sub-tree of a child of v has reduced its height.

ñ Initially, the node c—the new root in the sub-tree that has

changed—is either a dummy leaf or a node with two dummy

leafs as children.
v

x

c

Case 1

v

x

v

Case 2

In both cases bal[c] = 0.

ñ Call AVL-fix-up-delete(v) to restore the balance-condition.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 175

AVL-trees: Delete

Invariant at the beginning AVL-fix-up-delete(v):

1. The balance constraints holds at all descendants of v.

2. A node has been deleted from Tc, where c is either the right

or left child of v.

3. Tc has decreased its height by one.

4. The balance at the node c fulfills balance[c] = 0. This holds

because if the balance of c is in {−1,1}, then Tc did not

change its height, and the whole procedure would have

been aborted in the previous step.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 176

AVL-trees: Delete

Algorithm 9 AVL-fix-up-delete(v)
1: if balance[v] ∈ {−2,2} then DoRotationDelete(v);
2: if balance[v] ∈ {−1,1} return;

3: AVL-fix-up-delete(parent[v]);

We will show that the above procedure is correct. However, for

the case of a delete there may be a logarithmic number of

rotations.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 177

AVL-trees: Delete

Algorithm 10 DoRotationDelete(v)
1: if balance[v] = −2 then // deletion in left sub-tree
2: if balance[right[v]] ∈ {0,−1} then
3: LeftRotate(v);
4: else
5: DoubleLeftRotate(v);
6: else // deletion in right sub-tree
7: if balance[left[v]] = {0,1} then
8: RightRotate(v);
9: else

10: DoubleRightRotate(v);

Note that the case distinction on the second level (bal[right[v]]
and bal[left[v]]) is not done w.r.t. the child c for which the sub-
tree Tc has changed. This is different to AVL-fix-up-insert.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 178

AVL-trees: Delete

It is clear that the invariant for the fix-up routine hold as long as

no rotations have been done.

We show that after doing a rotation at v:

ñ v fulfills the balance condition.

ñ All children of v still fulfill the balance condition.

ñ If now balance[v] ∈ {−1,1} we can stop as the height of Tv
is the same as before the deletion.

We only look at the case where the deleted node was in the right

sub-tree of v. The other case is symmetric.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 179

AVL-trees: Delete

We have the following situation:

v

h+ 1
h

h− 1

The right sub-tree of v has decreased its height which results in

a balance of 2 at v.

Before the deletion the height of Tv was h+ 2.

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 180

Case 1: balance[left[v]] ∈ {0, 1}

If the middle subtree has height h the whole tree has height

h+ 2 as before the deletion. The iteration stops as the balance

at the root is non-zero.

If the middle subtree has height h− 1 the whole tree has

decreased its height from h+ 2 to h+ 1. We do continue the

fix-up procedure as the balance at the root is zero.

v

x

h
h
or
h− 1

h− 1

x

v

h

h
or
h− 1

h− 1

RightRotate(v)

Case 2: balance[left[v]] = −1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

v

x

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

vx

y

h− 1
h− 1

or
h− 2

h− 1
or
h− 2

h− 1

LeftRotate(x)

RightRotate(v)

DoubleRightRotate(v)Sub-tree has height
h+ 1, i.e., it has
shrunk. The
balance at y is
zero. We continue
the iteration.

AVL Trees

Bibliography

[OW02] Thomas Ottmann, Peter Widmayer:
Algorithmen und Datenstrukturen,
Spektrum, 4th edition, 2002

[GT98] Michael T. Goodrich, Roberto Tamassia
Data Structures and Algorithms in JAVA,
John Wiley, 1998

Chapter 5.2.1 of [OW02] contains a detailed description of AVL-trees, albeit only in German.

AVL-trees are covered in [GT98] in Chapter 7.4. However, the coverage is a lot shorter than in [OW02].

7.3 AVL-Trees

Ernst Mayr, Harald Räcke 183

	AVL-Trees

