7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than $\text{key}[v]$ and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:
We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- $T.\text{insert}(x)$
- $T.\text{delete}(x)$
- $T.\text{search}(k)$
- $T.\text{successor}(x)$
- $T.\text{predecessor}(x)$
- $T.\text{minimum}()$
- $T.\text{maximum}()$
Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

Algorithm 1 \textbf{TreeSearch}(x, k)

1: \textbf{if} \ x = \text{null} \ \textbf{or} \ k = \text{key}[x] \ \textbf{return} \ x
2: \textbf{if} \ k < \text{key}[x] \ \textbf{return} \ \text{TreeSearch}(\text{left}[x], k)
3: \textbf{else} \ \textbf{return} \ \text{TreeSearch}(\text{right}[x], k)
Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 \text{TreeSearch}(x, k)
\begin{align*}
1: & \quad \text{if } x = \text{null} \text{ or } k = \text{key}[x] \text{ return } x \\
2: & \quad \text{if } k < \text{key}[x] \text{ return } \text{TreeSearch}(\text{left}[x], k) \\
3: & \quad \text{else return } \text{TreeSearch}(\text{right}[x], k)
\end{align*}
Binary Search Trees: Searching

Algorithm 1 TreeSearch\((x, k)\)

1. \textbf{if} \(x = \text{null} \) \textbf{or} \(k = \text{key}[x]\) \textbf{return} \(x\)
2. \textbf{if} \(k < \text{key}[x]\) \textbf{return} TreeSearch\((\text{left}[x], k)\)
3. \textbf{else return} TreeSearch\((\text{right}[x], k)\)
Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch\((x, k)\)

1. if \(x = \text{null}\) or \(k = \text{key}[x]\) return \(x\)
2. if \(k < \text{key}[x]\) return TreeSearch(left\([x]\), \(k\))
3. else return TreeSearch(right\([x]\), \(k\))
Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 1

TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 1

TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch(x, k)

1: **if** x = null **or** k = key[x] **return** x
2: **if** k < key[x] **return** TreeSearch(left[x], k)
3: **else** return TreeSearch(right[x], k)
Algorithm 1 TreeSearch\((x, k)\)

1: if \(x = \text{null} \) or \(k = \text{key}[x]\) return \(x\)
2: if \(k < \text{key}[x]\) return TreeSearch(left\([x]\), \(k\))
3: else return TreeSearch(right\([x]\), \(k\))
Algorithm 2 \text{T}reeMin(x)
\begin{enumerate}
\item \textbf{if} $x = \text{null}$ \textbf{or} $\text{left}[x] = \text{null}$ \textbf{return} x
\item \textbf{return} \text{T}reeMin(\text{left}[x])
\end{enumerate}
Algorithm 2 TreeMin(x)
1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Algorithm 2 TreeMin(x)

1: if $x = \text{null}$ or left[x] = null return x
2: return TreeMin(left[x])
Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Binary Search Trees: Minimum

Algorithm 2 $\text{TreeMin}(x)$

1. if $x = \text{null}$ or $\text{left}[x] = \text{null}$ return x
2. return $\text{TreeMin}(\text{left}[x])$
Algorithm 2

TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Algorithm 3 `TreeSucc(x)`

1. if `right[x] ≠ null` return `TreeMin(right[x])`
2. `y ← parent[x]`
3. while `y ≠ null and x = right[y]` do
 4. `x ← y; y ← parent[x]`
4. return `y`
Algorithm 3 TreeSucc(\(x\))

1: if right[\(x\)] ≠ null return TreeMin(right[\(x\)])
2: \(y \leftarrow \text{parent}[x]\)
3: while \(y \neq \text{null} \text{ and } x = \text{right}[y]\) do
4: \(x \leftarrow y; y \leftarrow \text{parent}[x]\)
5: return \(y\);
Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: $y \leftarrow$ parent[x]
3: while y ≠ null and x = right[y] do
4: $x \leftarrow y$; $y \leftarrow$ parent[x]
5: return y;
Algorithm 3 TreeSucc\((x) \)

1. \textbf{if} right\([x] \) \textbf{null} \textbf{return} TreeMin(right\([x] \))
2. \(y \leftarrow \text{parent}[x] \)
3. \textbf{while} \(y \neq \text{null} \) \textbf{and} \(x = \text{right}[y] \) \textbf{do}
4. \(x \leftarrow y; y \leftarrow \text{parent}[x] \)
5. \textbf{return} \(y \);
Algorithm 3 TreeSucc(\(x\))

1: \(\textbf{if} \ \text{right}[x] \neq \text{null} \ \textbf{return} \ \text{TreeMin} (\text{right}[x])\\
2: \ y \leftarrow \text{parent}[x]\\
3: \ \textbf{while} \ y \neq \text{null} \ \textbf{and} \ x = \text{right}[y] \ \textbf{do}\\
4: \ \ x \leftarrow y; \ y \leftarrow \text{parent}[x]\\
5: \ \textbf{return} \ y;
Algorithm 3 TreeSucc(x)

1: if $\text{right}[x] \neq \text{null}$ return TreeMin($\text{right}[x]$)
2: $y \leftarrow \text{parent}[x]$
3: while $y \neq \text{null}$ and $x = \text{right}[y]$ do
4: $x \leftarrow y$; $y \leftarrow \text{parent}[x]$
5: return y;
Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Binary Search Trees: Insert

Algorithm 4 TreeInsert(x, z)
1: if x = null then
2: root[T] ← z; parent[z] ← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x] ← z; parent[z] ← x;
7: else TreeInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] ← z; parent[z] ← x;
11: else TreeInsert(right[x], z);
Binary Search Trees: Insert

Insert element **not** in the tree.

Algorithm 4 TreelInsert(x, z)

1: if $x = \text{null}$ then
2: \hspace{1em} root[T] \leftarrow z; parent[z] \leftarrow null;
3: \hspace{1em} return;
4: if key[x] $>$ key[z] then
5: \hspace{2em} if left[x] = null then
6: \hspace{3em} left[x] \leftarrow z; parent[z] \leftarrow x;
7: \hspace{2em} else TreelInsert(left[x], z);
8: \hspace{1em} else
9: \hspace{2em} if right[x] = null then
10: \hspace{3em} right[x] \leftarrow z; parent[z] \leftarrow x;
11: \hspace{2em} else TreelInsert(right[x], z);
Binary Search Trees: Insert

Insert element **not** in the tree.

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreInsert(x, z)

1: if $x = \text{null}$ then
2: root[T] ← z; parent[z] ← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x] ← z; parent[z] ← x;
7: else TreInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] ← z; parent[z] ← x;
11: else TreInsert(right[x], z);
Binary Search Trees: Insert

Insert element **not** in the tree.

TreelInsert(root, 20)

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreelInsert(x, z)

1: if x = null then
2: root[T] ← z; parent[z] ← null;
3: return;
4: if $\text{key}[x] > \text{key}[z]$ then
5: if left[x] = null then
6: left[x] ← z; parent[z] ← x;
7: else TreelInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] ← z; parent[z] ← x;
11: else TreelInsert(right[x], z);
Binary Search Trees: Insert

Insert element not in the tree.

Treelninsert(root, 20)

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 Treelninsert(x, z)
1: if x = null then
2: \(\text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null}; \)
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: \(\text{left}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
7: else Treelninsert(left[x], z);
8: else
9: if right[x] = null then
10: \(\text{right}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
11: else Treelninsert(right[x], z);
Binary Search Trees: Insert

Insert element **not** in the tree.

`TreeInsert(root, 20)`

Search for `z`. At some point the search stops at a null-pointer. This is the place to insert `z`.

Algorithm 4 TreeInsert(x, z)

1. **if** `x = null` **then**
2. `root[T] ← z; parent[z] ← null;`
3. **return**;
4. **if** `key[x] > key[z]` **then**
5. **if** `left[x] = null` **then**
6. `left[x] ← z; parent[z] ← x;`
7. **else** TreeInsert(`left[x], z`);
8. **else**
9. **if** `right[x] = null` **then**
10. `right[x] ← z; parent[z] ← x;`
11. **else** TreeInsert(`right[x], z`);
Binary Search Trees: Insert

Insert element **not** in the tree.

TreeInsert(root, 20)

Search for \(z\). At some point the search stops at a null-pointer. This is the place to insert \(z\).

Algorithm 4 TreeInsert\((x, z)\)

1: if \(x = \text{null}\) then
2: \(\text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null};\)
3: return;
4: if key\([x]\) > key\([z]\) then
5: if left\([x]\) = null then
6: \(\text{left}[x] \leftarrow z; \text{parent}[z] \leftarrow x;\)
7: else TreeInsert(left\([x]\), z);
8: else
9: if right\([x]\) = null then
10: \(\text{right}[x] \leftarrow z; \text{parent}[z] \leftarrow x;\)
11: else TreeInsert(right\([x]\), z);
Binary Search Trees: Insert

Insert element **not** in the tree.

TreelInsert(root, 20)

Search for \(z \). At some point the search stops at a null-pointer. This is the place to insert \(z \).

Algorithm 4 TreelInsert(\(x, z \))

1: \(\text{if } x = \text{null } \text{then} \)
2: \(\text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null}; \)
3: \(\text{return}; \)
4: \(\text{if } \text{key}[x] > \text{key}[z] \text{ then} \)
5: \(\text{if } \text{left}[x] = \text{null } \text{then} \)
6: \(\text{left}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
7: \(\text{else } \text{TreelInsert(left}[x], z); \)
8: \(\text{else} \)
9: \(\text{if } \text{right}[x] = \text{null } \text{then} \)
10: \(\text{right}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
11: \(\text{else } \text{TreelInsert(right}[x], z); \)
Binary Search Trees: Insert

Insert element **not** in the tree.

TreeInsert (root, 20)

Search for \(z \). At some point the search stops at a null-pointer. This is the place to insert \(z \).

Algorithm 4 TreeInsert(\(x, z \))

1: if \(x = \text{null} \) then
2: \(\text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null}; \)
3: return;
4: if \(\text{key}[x] > \text{key}[z] \) then
5: if \(\text{left}[x] = \text{null} \) then
6: \(\text{left}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
7: else TreeInsert(\(\text{left}[x], z \));
8: else
9: if \(\text{right}[x] = \text{null} \) then
10: \(\text{right}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
11: else TreeInsert(\(\text{right}[x], z \));
Binary Search Trees: Delete
Case 1:
Element does not have any children
- Simply go to the parent and set the corresponding pointer to \texttt{null}.
Case 1:
Element does not have any children

- Simply go to the parent and set the corresponding pointer to **null**.
Case 1:
Element does not have any children
 ▶ Simply go to the parent and set the corresponding pointer to null.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Binary Search Trees: Delete

Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Binary Search Trees: Delete

Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Algorithm 9 TreeDelete(z)

1: if $\text{left}[z] = \text{null}$ or $\text{right}[z] = \text{null}$
2: then $y \leftarrow z$ else $y \leftarrow \text{TreeSucc}(z)$; \hspace{1cm} select y to splice out
3: if $\text{left}[y] \neq \text{null}$
4: then $x \leftarrow \text{left}[y]$ else $x \leftarrow \text{right}[y]$; \hspace{1cm} x is child of y (or null)
5: if $x \neq \text{null}$ then $\text{parent}[x] \leftarrow \text{parent}[y]$; \hspace{1cm} $\text{parent}[x]$ is correct
6: if $\text{parent}[y] = \text{null}$ then
7: $\text{root}[T] \leftarrow x$
8: else
9: if $y = \text{left}[\text{parent}[y]]$ then
10: $\text{left}[\text{parent}[y]] \leftarrow x$
11: else
12: $\text{right}[\text{parent}[y]] \leftarrow x$
13: if $y \neq z$ then copy y-data to z

fix pointer to x
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\Theta(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $\Theta(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps
similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $O(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $O(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.