7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node \(v \) have a smaller key-value than \(\text{key}[v] \) and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

```
1 2 3 4 5 6 7 8
```

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- \(T.\text{insert}(x) \)
- \(T.\text{delete}(x) \)
- \(T.\text{search}(k) \)
- \(T.\text{successor}(x) \)
- \(T.\text{predecessor}(x) \)
- \(T.\text{minimum}() \)
- \(T.\text{maximum}() \)

Algorithm 1 \text{TreeSearch}(x, k)

1: if \(x = \text{null} \) or \(k = \text{key}[x] \) return \(x \)
2: if \(k < \text{key}[x] \) return \text{TreeSearch}(\text{left}[x], k)
3: else return \text{TreeSearch}(\text{right}[x], k)

Binary Search Trees: Searching

\text{TreeSearch}(\text{root}, 17)

```
1 2 3 4 5 6 7 8
```

```
13 25 30
6 10 13 15 19
4
```

Algorithm 1 \text{TreeSearch}(x, k)

1: if \(x = \text{null} \) or \(k = \text{key}[x] \) return \(x \)
2: if \(k < \text{key}[x] \) return \text{TreeSearch}(\text{left}[x], k)
3: else return \text{TreeSearch}(\text{right}[x], k)
Binary Search Trees: Minimum

Algorithm 2 `TreeMin(x)`

1. if \(x = \text{null} \) or \(\text{left}[x] = \text{null} \) return \(x \)
2. return `TreeMin(left[x])`

Binary Search Trees: Successor

Algorithm 7 `TreeSucc(x)`

1. if \(\text{right}[x] \neq \text{null} \) return `TreeMin(right[x])`
2. \(y \leftarrow \text{parent}[x] \)
3. while \(y \neq \text{null} \) and \(x = \text{right}[y] \) do
 4. \(x \leftarrow y; y \leftarrow \text{parent}[x] \)
5. return \(y \)

Binary Search Trees: Insert

Algorithm 4 `TreeInsert(x, z)`

1. if \(x = \text{null} \) then
2. \(\text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null}; \)
3. return;
4. if \(\text{key}[x] > \text{key}[z] \) then
 5. if \(\text{left}[x] = \text{null} \) then
 6. \(\text{left}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
 7. return;
 8. else
 9. `TreeInsert(right[x], z)`;
5. else
6. if \(\text{key}[x] \leq \text{key}[z] \) then
 7. if \(\text{right}[x] = \text{null} \) then
 8. \(\text{right}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
 9. return;
 10. else
 11. `TreeInsert(right[x], z)`;

Insert element not in the tree. `TreeInsert(root, 20)`

Search for \(z \). At some point the search stops at a null-pointer. This is the place to insert \(z \).
Case 1:
Element does not have any children
▶ Simply go to the parent and set the corresponding pointer to null.

Case 2:
Element has exactly one child
▶ Splice the element out of the tree by connecting its parent to its successor.

Case 3:
Element has two children
▶ Find the successor of the element
▶ Splice successor out of the tree
▶ Replace content of element by content of successor

Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
2: then y ← z else y ← TreeSucc(z);
3: if left[y] ≠ null
4: then x ← left[y] else x ← right[y]; x is child of y (or null)
5: if x ≠ null then parent[x] ← parent[y]; parent[x] is correct
6: if parent[y] = null then
7: root[T] ← x
8: else
9: if y = left[parent[y]] then
10: left[parent[y]] ← x
11: else
12: right[parent[y]] ← x
13: if y ≠ z then copy y-data to z

select y to splice out
fix pointer to x
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps
similar: SPLAY trees.

Binary Search Trees (BSTs)

Bibliography

Binary search trees can be found in every standard text book. For example Chapter 7.1 in [MS08] and Chapter 12 in [CLRS90].