7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than $\text{key}[v]$ and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:
7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- \(T.\text{insert}(x) \)
- \(T.\text{delete}(x) \)
- \(T.\text{search}(k) \)
- \(T.\text{successor}(x) \)
- \(T.\text{predecessor}(x) \)
- \(T.\text{minimum}() \)
- \(T.\text{maximum}() \)
Algorithm 1 TreeSearch(x, k)

1. if $x = \text{null}$ or $k = \text{key}[x]$ return x
2. if $k < \text{key}[x]$ return TreeSearch(left[x], k)
3. else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch(x, k)

1: if $x = \text{null}$ or $k = \text{key}[x]$ return x
2: if $k < \text{key}[x]$ return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Algorithm 7 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: $y \leftarrow$ parent[x]
3: while y ≠ null and x = right[y] do
4: $x \leftarrow y$; $y \leftarrow$ parent[x]
5: return y;
Algorithm 7 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Binary Search Trees: Insert

Insert element **not** in the tree.

TreeInsert(root, 20)

Search for \(z \). At some point the search stops at a null-pointer. This is the place to insert \(z \).

Algorithm 4 TreeInsert \((x, z)\)

1: **if** \(x = \text{null} \) **then**
2: \(\text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null}; \)
3: **return**;
4: **if** \(\text{key}[x] > \text{key}[z] \) **then**
5: **if** \(\text{left}[x] = \text{null} \) **then**
6: \(\text{left}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
7: **else** TreeInsert(left[x], z);
8: **else**
9: **if** \(\text{right}[x] = \text{null} \) **then**
10: \(\text{right}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
11: **else** TreeInsert(right[x], z);
Case 1:
Element does not have any children
 - Simply go to the parent and set the corresponding pointer to null.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Algorithm 9 TreeDelete(z)

1: if left[z] = null or right[z] = null
2: then $y \leftarrow z$ else $y \leftarrow \text{TreeSucc}(z)$; select y to splice out
3: if left[y] ≠ null
4: then $x \leftarrow \text{left}[y]$ else $x \leftarrow \text{right}[y]$; x is child of y (or null)
5: if x ≠ null then parent[x] ← parent[y]; parent[x] is correct
6: if parent[y] = null then
7: root[T] ← x
8: else
9: if $y = \text{left}[\text{parent}[y]]$ then
10: left[parent[y]] ← x
11: else
12: left[parent[y]] ← x
13: if $y \neq z$ then copy y-data to z
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $O(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Binary Search Trees (BSTs)

Bibliography

Binary search trees can be found in every standard text book. For example Chapter 7.1 in [MS08] and Chapter 12 in [CLRS90].