7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node \(v \) have a smaller key-value than \(\text{key}[v] \) and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:
7.1 Binary Search Trees

We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

- $T.\text{insert}(x)$
- $T.\text{delete}(x)$
- $T.\text{search}(k)$
- $T.\text{successor}(x)$
- $T.\text{predecessor}(x)$
- $T.\text{minimum}()$
- $T.\text{maximum}()$
Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 \textbf{TreeSearch}(x, k)

\begin{enumerate}
\item \textbf{if} $x = \text{null}$ \textbf{or} $k = \text{key}[x]$ \textbf{return} x
\item \textbf{if} $k < \text{key}[x]$ \textbf{return} \textbf{TreeSearch}(\text{left}[x], k)$
\item \textbf{else return} \textbf{TreeSearch}(\text{right}[x], k)$
\end{enumerate}
Algorithm 1 TreeSearch(x, k)

1: if $x = \text{null}$ or $k = \text{key}[x]$ return x
2: if $k < \text{key}[x]$ return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 1 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch(x, k)

1. if $x = \text{null}$ or $k = \text{key}[x]$ return x
2. if $k < \text{key}[x]$ return TreeSearch(left[x], k)
3. else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 1 TreeSearch(x, k)

1: if \(x = \text{null} \) or \(k = \text{key}[x] \) return \(x \)
2: if \(k < \text{key}[x] \) return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Algorithm 1 TreeSearch\((x, k) \)

1. \textbf{if} \(x = \text{null} \) \textbf{or} \(k = \text{key}[x] \) \textbf{return} \(x \)
2. \textbf{if} \(k < \text{key}[x] \) \textbf{return} TreeSearch(left[x], k)
3. \textbf{else return} TreeSearch(right[x], k)
Algorithm 1 TreeSearch\((x, k)\)

1. if \(x = \text{null} \) or \(k = \text{key}[x]\) return \(x\)
2. if \(k < \text{key}[x]\) return TreeSearch\((\text{left}[x], k)\)
3. else return TreeSearch\((\text{right}[x], k)\)
Binary Search Trees: Searching

TreeSearch(root, 8)

```
Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
```
Algorithm 1 TreeSearch(x, k)
1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)
Binary Search Trees: Searching

Algorithm 1

TreeSearch(x, k)

1. if x = null or k = key[x] return x
2. if k < key[x] return TreeSearch(left[x], k)
3. else return TreeSearch(right[x], k)
Algorithm 2 \text{TreeMin}(x)
\begin{itemize}
\item[1:] \textbf{if } x = \text{null} \textbf{ or left}[x] = \text{null} \textbf{ return } x
\item[2:] \textbf{return} \text{TreeMin}(\text{left}[x])
\end{itemize}
Algorithm 2 \(\text{TreeMin}(x) \)

1. \(\textbf{if} \ x = \text{null or left}[x] = \text{null} \ \textbf{return} \ x \)
2. \(\textbf{return} \ \text{TreeMin}(\text{left}[x]) \)
Algorithm 2 TreeMin(x)
1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Algorithm 2 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Algorithm 2 TreeMin(x)
1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
Binary Search Trees: Successor

Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: $y ←$ parent[x]
3: while y ≠ null and $x = $ right[y] do
4: $x ← y$; $y ←$ parent[x]
5: return y;
Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
 4: x ← y; y ← parent[x]
5: return y;
Algorithm 3 TreeSucc(\(x\))

1. if right[\(x\)] \(\neq\) null return TreeMin(right[\(x\)])
2. \(y \leftarrow\) parent[\(x\)]
3. while \(y \neq\) null and \(x =\) right[\(y\)] do
4. \(x \leftarrow y; y \leftarrow\) parent[\(x\)]
5. return \(y\);
Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Algorithm 3 TreeSucc(x)
1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y
Algorithm 3 TreeSucc(x)

1: if right[x] ≠ null return TreeMin(right[x])
2: y ← parent[x]
3: while y ≠ null and x = right[y] do
4: x ← y; y ← parent[x]
5: return y;
Binary Search Trees: Insert

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4

`TreeInsert(x, z)`

1: if $x = \text{null}$ then
2: \quad \text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null};
3: \quad \text{return};
4: if $\text{key}[x] > \text{key}[z]$ then
5: \quad if $\text{left}[x] = \text{null}$ then
6: \quad \quad \text{left}[x] \leftarrow z; \text{parent}[z] \leftarrow x;
7: \quad \quad \text{else} \ TreeInsert(\text{left}[x], z);
8: \quad \text{else}
9: \quad \quad if \ \text{right}[x] = \text{null} \text{ then}
10: \quad \quad \quad \text{right}[x] \leftarrow z; \text{parent}[z] \leftarrow x;
11: \quad \quad \text{else} \ TreeInsert(\text{right}[x], z);
Binary Search Trees: Insert

Insert element not in the tree.

Algorithm 4 TreeInsert(x, z)

1: if x = null then
2: root[T] ← z; parent[z] ← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x] ← z; parent[z] ← x;
7: else TreeInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] ← z; parent[z] ← x;
11: else TreeInsert(right[x], z);
Binary Search Trees: Insert

Insert element not in the tree.

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreelInsert(x, z)

1: if $x = \text{null}$ then
2: root[T] ← z; parent[z] ← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x] ← z; parent[z] ← x;
7: else TreelInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] ← z; parent[z] ← x;
11: else TreelInsert(right[x], z);
Binary Search Trees: Insert

Insert element **not** in the tree.

TreelInsert(root, 20)

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreelInsert(x, z)

1: if $x = \text{null}$ then
2: root[T] \leftarrow z; parent[z] \leftarrow null;
3: return;
4: if key[x] $>$ key[z] then
5: if left[x] = null then
6: left[x] \leftarrow z; parent[z] \leftarrow x;
7: else TreelInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] \leftarrow z; parent[z] \leftarrow x;
11: else TreelInsert(right[x], z);
Binary Search Trees: Insert

Insert element **not** in the tree.

TreeInsert(root, 20)

Search for \(z \). At some point the search stops at a null-pointer. This is the place to insert \(z \).

Algorithm 4 TreeInsert\((x, z)\)

1: if \(x = \text{null} \) then
2: \(\text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null}; \)
3: return;
4: if key\([x]\) > key\([z]\) then
5: if left\([x]\) = null then
6: left\([x]\) \leftarrow z; parent\([z]\) \leftarrow x;
7: else TreeInsert(left\([x]\), z);
8: else
9: if right\([x]\) = null then
10: right\([x]\) \leftarrow z; parent\([z]\) \leftarrow x;
11: else TreeInsert(right\([x]\), z);
Binary Search Trees: Insert

Insert element not in the tree.

TreeInsert(root, 20)

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x, z)

1: if $x = \text{null}$ then
2: root[T] $\leftarrow z$; parent[z] $\leftarrow \text{null}$;
3: return;
4: if key[x] $>$ key[z] then
5: if left[x] = null then
6: left[x] $\leftarrow z$; parent[z] $\leftarrow x$;
7: else TreeInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] $\leftarrow z$; parent[z] $\leftarrow x$;
11: else TreeInsert(right[x], z);
Binary Search Trees: Insert

Insert element **not** in the tree.

TreeInsert(root, 20)

Search for \(z \). At some point the search stops at a null-pointer. This is the place to insert \(z \).

Algorithm 4 TreeInsert(*x, z*)

1: **if** \(x = \text{null} \) **then**
2: \(\text{root}[T] \leftarrow z; \text{parent}[z] \leftarrow \text{null}; \)
3: **return**;
4: **if** \(\text{key}[x] > \text{key}[z] \) **then**
5: **if** \(\text{left}[x] = \text{null} \) **then**
6: \(\text{left}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
7: **else** TreeInsert(left[x], z);
8: **else**
9: **if** \(\text{right}[x] = \text{null} \) **then**
10: \(\text{right}[x] \leftarrow z; \text{parent}[z] \leftarrow x; \)
11: **else** TreeInsert(right[x], z);
Binary Search Trees: Insert
Insert element **not** in the tree.

\textbf{TreelInsert}(\texttt{root, 20})

![Binary Search Tree Diagram]

Search for \textit{z}. At some point the search stops at a null-pointer. This is the place to insert \textit{z}.

Algorithm 4 TreelInsert(\textit{x, z})

1: if \textit{x} = null then
2: \hspace{1em} root[\textit{T}] \leftarrow \textit{z}; parent[\textit{z}] \leftarrow \text{null};
3: \hspace{1em} return;
4: if key[\textit{x}] > key[\textit{z}] then
5: \hspace{2em} if left[\textit{x}] = null then
6: \hspace{3em} left[\textit{x}] \leftarrow \textit{z}; parent[\textit{z}] \leftarrow \textit{x};
7: \hspace{2em} else TreelInsert(left[\textit{x}], \textit{z});
8: \hspace{1em} else
9: \hspace{2em} if right[\textit{x}] = null then
10: \hspace{3em} right[\textit{x}] \leftarrow \textit{z}; parent[\textit{z}] \leftarrow \textit{x};
11: \hspace{2em} else TreelInsert(right[\textit{x}], \textit{z});
Binary Search Trees: Insert

Insert element not in the tree.

TreeInsert(root, 20)

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x, z)

1: if x = null then
2: root[T] ← z; parent[z] ← null;
3: return;
4: if key[x] > key[z] then
5: if left[x] = null then
6: left[x] ← z; parent[z] ← x;
7: else TreeInsert(left[x], z);
8: else
9: if right[x] = null then
10: right[x] ← z; parent[z] ← x;
11: else TreeInsert(right[x], z);
Case 1:
Element does not have any children
 ▶ Simply go to the parent and set the corresponding pointer to null.
Case 1:
Element does not have any children
 ▶ Simply go to the parent and set the corresponding pointer to null.
Case 1:
Element does not have any children
 ▶ Simply go to the parent and set the corresponding pointer to \text{null}.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Binary Search Trees: Delete

Case 2:
Element has exactly one child

- Splice the element out of the tree by connecting its parent to its successor.
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Case 3:
Element has two children

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor
Algorithm 9 TreeDelete(z)

1: if left[z] = null or right[z] = null
2: then $y \leftarrow z$ else $y \leftarrow \text{TreeSucc}(z)$; select y to splice out
3: if left[y] ≠ null
4: then $x \leftarrow \text{left}[y]$ else $x \leftarrow \text{right}[y]$; x is child of y (or null)
5: if $x \neq$ null then parent[x] ← parent[y]; parent[x] is correct
6: if parent[y] = null then
7: root[T] ← x
8: else
9: if y = left[parent[y]] then
10: left[parent[y]] ← x
11: else
12: right[parent[y]] ← x
13: if $y \neq z$ then copy y-data to z

select y to splice out
y is child of x (or null)
parent[x] is correct
fix pointer to x

If $y \neq z$, copy y-data to z
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\Theta(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $\Theta(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time \(\Theta(h) \), where \(h \) denotes the height of the tree.

However the height of the tree may become as large as \(\Theta(n) \).

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of \(\Theta(\log n) \).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $O(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.
Balanced Binary Search Trees

All operations on a binary search tree can be performed in time $O(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.