8.2 Binomial Heaps

Operation

<table>
<thead>
<tr>
<th>Operation</th>
<th>Binary Heap</th>
<th>BST</th>
<th>Binomial Heap</th>
<th>Fibonacci Heap</th>
</tr>
</thead>
<tbody>
<tr>
<td>build</td>
<td>(n)</td>
<td>(n \log n)</td>
<td>(n \log n)</td>
<td>(n)</td>
</tr>
<tr>
<td>minimum</td>
<td>(1)</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(1)</td>
</tr>
<tr>
<td>is-empty</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>insert</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(1)</td>
</tr>
<tr>
<td>delete</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>delete-min</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
</tr>
<tr>
<td>decrease-key</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(\log n)</td>
<td>(1)</td>
</tr>
<tr>
<td>merge</td>
<td>(n)</td>
<td>(n \log n)</td>
<td>(\log n)</td>
<td>(1)</td>
</tr>
</tbody>
</table>

Binomial Trees

Properties of Binomial Trees

- \(B_k \) has \(2^k \) nodes.
- \(B_k \) has height \(k \).
- The root of \(B_k \) has degree \(k \).
- \(B_k \) has \(\binom{k}{\ell} \) nodes on level \(\ell \).
- Deleting the root of \(B_k \) gives trees \(B_0, B_1, \ldots, B_{k-1} \).

Deleting the root of \(B_5 \) leaves sub-trees \(B_4, B_3, B_2, B_1, \) and \(B_0 \).
Deleting the leaf furthest from the root (in B_5) leaves a path that connects the roots of sub-trees B_4, B_3, B_2, B_1, and B_0.

The number of nodes on level ℓ in tree B_k is therefore

$$\binom{k-1}{\ell-1} + \binom{k-1}{\ell} = \binom{k}{\ell}$$

The binomial tree B_k is a sub-graph of the hypercube H_k.

The parent of a node with label b_n, \ldots, b_1, b_0 is obtained by setting the least significant 1-bit to 0.

The ℓ-th level contains nodes that have ℓ 1's in their label.

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have siblings then x.left = x.right = x).
Given a pointer to a node x we can splice out the sub-tree rooted at x in constant time.

We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T.

In a binomial heap the keys are arranged in a collection of binomial trees.

Every tree fulfills the heap-property

There is at most one tree for every dimension/order. For example the above heap contains trees B_0, B_1, and B_4.

Properties of a heap with n keys:

- Let $n = b_d b_{d-1}, \ldots, b_0$ denote binary representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lceil \log n \rceil + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lceil \log n \rceil$.
- The trees are stored in a single-linked list; ordered by dimension/size.
Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Note that we do not just do a concatenation as we want to keep the trees in the list sorted according to size.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous to binary addition.

8.2 Binomial Heaps

All other operations can be reduced to merge().

S_1. merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- Time: $O(\log n)$.

S. insert(x):

- Create a new heap S' that contains just the element x.
- Execute S. merge(S').
- Time: $O(\log n)$.
8.2 Binomial Heaps

S. minimum:
- Find the minimum key-value among all roots.
- Time: $O(\log n)$.

S. delete-min:
- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{min} after deleting the root (note that these are just $O(\log n)$ trees).
- Compute $S.\text{merge}(S')$.
- Time: $O(\log n)$.

S. decrease-key(handle h):
- Decrease the key of the element pointed to by h.
- Bubble the element up in the tree until the heap property is fulfilled.
- Time: $O(\log n)$ since the trees have height $O(\log n)$.

S. delete(handle h):
- Execute $S.\text{decrease-key}(h, -\infty)$.
- Execute $S.\text{delete-min}$.
- Time: $O(\log n)$.