How to choose augmenting paths?

- We need to find paths efficiently.
How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.
How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:
How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.
Capacity Scaling

Intuition:
▶ Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
▶ Don’t worry about finding the exact bottleneck.
▶ Maintain scaling parameter Δ.

$G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.
Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don’t worry about finding the exact bottleneck.
Capacity Scaling

Intuition:

▶ Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
▶ Don’t worry about finding the exact bottleneck.
▶ Maintain scaling parameter Δ.

$G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.
Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don’t worry about finding the exact bottleneck.
- Maintain scaling parameter Δ.
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.
Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don’t worry about finding the exact bottleneck.
- Maintain scaling parameter Δ.
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.

![Graph](image-url)
Algorithm 2 \texttt{maxflow}(G, s, t, c)

\begin{itemize}
\item[1:] \textbf{foreach} \(e \in E \) \textbf{do} \(f_e \leftarrow 0 \);
\item[2:] \(\Delta \leftarrow 2^{\lceil \log_2 C \rceil} \)
\item[3:] \textbf{while} \(\Delta \geq 1 \) \textbf{do}
\item[4:] \(G_f(\Delta) \leftarrow \Delta\text{-residual graph} \)
\item[5:] \textbf{while} there is augmenting path \(P \) in \(G_f(\Delta) \) \textbf{do}
\item[6:] \(f \leftarrow \text{augment}(f, c, P) \)
\item[7:] \(\text{update}(G_f(\Delta)) \)
\item[8:] \(\Delta \leftarrow \Delta/2 \)
\item[9:] \textbf{return} \(f \)
\end{itemize}
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:

▶ because of integrality we have $G_{\text{f}}(1) = G_{\text{f}}$
▶ therefore after the last phase there are no augmenting paths anymore
▶ this means we have a maximum flow.
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

11.3 Capacity Scaling
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:

▶ because of integrality we have $G_f(1) = G_f$
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
Capacity Scaling

Assumption:
All capacities are integers between 1 and \(C \).

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:
- because of integrality we have \(G_f(1) = G_f \)
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.
Lemma 1

There are $\lceil \log C \rceil + 1$ iterations over Δ.

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\text{val}(f) + m\Delta$.

Proof: less obvious, but simple:

1. There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
2. In G_f this cut can have capacity at most $m\Delta$.
3. This gives me an upper bound on the flow that I can still add.
Lemma 1

There are $\lceil \log C \rceil + 1$ iterations over Δ.

Proof: obvious.
Lemma 1
There are $\lceil \log C \rceil + 1$ iterations over Δ.

Proof: obvious.

Lemma 2
Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\text{val}(f) + m\Delta$.

Proof: less obvious, but simple:
Lemma 1

There are $\lceil \log C \rceil + 1$ *iterations over* Δ.

Proof: obvious.

Lemma 2

Let f *be the flow at the end of a* Δ-*phase. Then the maximum flow is smaller than* $\operatorname{val}(f) + m\Delta$.

Proof: less obvious, but simple:

- There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
Lemma 1

There are $\lceil \log C \rceil + 1$ iterations over Δ.

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\text{val}(f) + m\Delta$.

Proof: less obvious, but simple:

- There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- In G_f this cut can have capacity at most $m\Delta$.

Capacity Scaling

Lemma 1

There are $\lceil \log C \rceil + 1$ iterations over Δ.

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\text{val}(f) + m\Delta$.

Proof: less obvious, but simple:

- There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- In G_f this cut can have capacity at most $m\Delta$.
- This gives me an upper bound on the flow that I can still add.
Lemma 3
There are at most \(2m\) augmentations per scaling-phase.

Proof:
Let \(f\) be the flow at the end of the previous phase. \(\text{val}(f^+) \leq \text{val}(f) + 2m\Delta\). Each augmentation increases flow by \(\Delta\).

Theorem 4
We need \(O(m\log C)\) augmentations. The algorithm can be implemented in time \(O(m^2 \log C)\).
Lemma 3

There are at most $2m$ augmentations per scaling-phase.
Lemma 3

There are at most $2m$ augmentations per scaling-phase.

Proof:

Let f be the flow at the end of the previous phase.
Lemma 3

There are at most $2m$ augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $\text{val}(f^*) \leq \text{val}(f) + 2m\Delta$
Lemma 3

There are at most $2m$ augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $\text{val}(f^*) \leq \text{val}(f) + 2m\Delta$
- Each augmentation increases flow by Δ.
Lemma 3

There are at most $2m$ augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $\text{val}(f^*) \leq \text{val}(f) + 2m\Delta$
- Each augmentation increases flow by Δ.

Theorem 4

We need $\Theta(m \log C)$ augmentations. The algorithm can be implemented in time $\Theta(m^2 \log C)$.