How to choose augmenting paths?

▶ We need to find paths efficiently.
▶ We want to guarantee a small number of iterations.

Several possibilities:

▶ Choose path with maximum bottleneck capacity.
▶ Choose path with sufficiently large bottleneck capacity.
▶ Choose the shortest augmenting path.

Capacity Scaling

Intuition:

▶ Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
▶ Don’t worry about finding the exact bottleneck.
▶ Maintain scaling parameter \(\Delta \).
▶ \(G_f(\Delta) \) is a sub-graph of the residual graph \(G_f \) that contains only edges with capacity at least \(\Delta \).

Algorithm 2: maxflow \((G, s, t, c)\)

1: foreach \(e \in E \) do \(f_e \leftarrow 0 \);
2: \(\Delta \leftarrow 2^\lceil \log_2 C \rceil \)
3: while \(\Delta \geq 1 \) do
4: \(G_f(\Delta) \leftarrow \Delta \)-residual graph
5: while there is augmenting path \(P \) in \(G_f(\Delta) \) do
6: \(f \leftarrow \text{augment}(f, c, P) \)
7: update\((G_f(\Delta))\)
8: \(\Delta \leftarrow \Delta/2 \)
9: return \(f \)

Assumption:

All capacities are integers between 1 and \(C \).

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

▶ because of integrality we have \(G_f(1) = G_f \)
▶ therefore after the last phase there are no augmenting paths anymore
▶ this means we have a maximum flow.
Capacity Scaling

Lemma 1
There are $\lceil \log C \rceil + 1$ iterations over Δ.

Proof: obvious.

Lemma 2
Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\text{val}(f) + m\Delta$.

Proof: less obvious, but simple:
- There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- In G_f this cut can have capacity at most $m\Delta$.
- This gives me an upper bound on the flow that I can still add.

Theorem 4
We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $O(m^2 \log C)$.

Lemma 3
There are at most $2m$ augmentations per scaling-phase.

Proof:
- Let f be the flow at the end of the previous phase.
- $\text{val}(f^*) \leq \text{val}(f) + 2m\Delta$
- Each augmentation increases flow by Δ.

Ernst Mayr, Harald Räcke