How to choose augmenting paths?

- We need to find paths efficiently.
How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.
How to choose augmenting paths?

▶ We need to find paths efficiently.
▶ We want to guarantee a small number of iterations.

Several possibilities:
How to choose augmenting paths?

▶ We need to find paths efficiently.
▶ We want to guarantee a small number of iterations.

Several possibilities:

▶ Choose path with maximum bottleneck capacity.
▶ Choose path with sufficiently large bottleneck capacity.
▶ Choose the shortest augmenting path.
Intuition:

▶ Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.

▶ Don’t worry about finding the exact bottleneck.

▶ Maintain scaling parameter Δ.

$G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.
Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
Capacity Scaling

Intuition:

▶ Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
▶ Don’t worry about finding the exact bottleneck.
Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don’t worry about finding the exact bottleneck.
- Maintain scaling parameter Δ.
Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don’t worry about finding the exact bottleneck.
- Maintain scaling parameter Δ.
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.
Capacity Scaling

Intuition:

▶ Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
▶ Don’t worry about finding the exact bottleneck.
▶ Maintain scaling parameter Δ.
▶ $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ.

\[G_f(\Delta) \]

$G_f(99)$

G_f
Algorithm 2 maxflow(G, s, t, c)

1: foreach $e \in E$ do $f_e \leftarrow 0$;
2: $\Delta \leftarrow 2^{\lceil \log_2 C \rceil}$
3: while $\Delta \geq 1$ do
4: $G_f(\Delta) \leftarrow \Delta$-residual graph
5: while there is augmenting path P in $G_f(\Delta)$ do
6: $f \leftarrow$ augment(f, c, P)
7: update($G_f(\Delta)$)
8: $\Delta \leftarrow \Delta/2$
9: return f
Capacity Scaling

Assumption: All capacities are integers between 1 and C.

Invariant: All flows and capacities are/remain integral throughout the algorithm.

Correctness: The algorithm computes a maxflow:

▶ because of integrality we have $G_f(1)$

▶ therefore after the last phase there are no augmenting paths anymore

▶ this means we have a maximum flow.
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
Capacity Scaling

Assumption:
All capacities are integers between 1 and \(C \).

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:
- because of integrality we have \(G_f(1) = G_f \)
- therefore after the last phase there are no augmenting paths anymore
Capacity Scaling

Assumption:
All capacities are integers between 1 and C.

Invariant:
All flows and capacities are/remain integral throughout the algorithm.

Correctness:
The algorithm computes a maxflow:
- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.
Lemma 1

There are $\lceil \log C \rceil + 1$ iterations over Δ.

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\text{val}(f) + m \Delta$.

Proof: less obvious, but simple:

1. There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
2. In G_f this cut can have capacity at most $m \Delta$.
3. This gives me an upper bound on the flow that I can still add.

11.3 Capacity Scaling 11. Apr. 2018

Ernst Mayr, Harald Räcke
Lemma 1

There are $\lceil \log C \rceil + 1$ iterations over Δ.

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $val(f) + m\Delta$.

Proof: less obvious, but simple:

1. There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
2. In G_f this cut can have capacity at most $m\Delta$.
3. This gives me an upper bound on the flow that I can still add.
Capacity Scaling

Lemma 1
There are \(\lceil \log C \rceil + 1 \) iterations over \(\Delta \).

Proof: obvious.

Lemma 2
Let \(f \) be the flow at the end of a \(\Delta \)-phase. Then the maximum flow is smaller than \(\text{val}(f) + m\Delta \).

Proof: less obvious, but simple:
Lemma 1

There are ⌈log C⌉ + 1 iterations over Δ.

Proof: obvious.

Lemma 2

Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than val(f) + mΔ.

Proof: less obvious, but simple:
- There must exist an s-t cut in G_f(Δ) of zero capacity.
Capacity Scaling

Lemma 1

There are \(\lceil \log C \rceil + 1 \) iterations over \(\Delta \).

Proof: obvious.

Lemma 2

Let \(f \) be the flow at the end of a \(\Delta \)-phase. Then the maximum flow is smaller than \(\text{val}(f) + m\Delta \).

Proof: less obvious, but simple:
- There must exist an \(s-t \) cut in \(G_f(\Delta) \) of zero capacity.
- In \(G_f \) this cut can have capacity at most \(m\Delta \).
Capacity Scaling

Lemma 1
There are $\lceil \log C \rceil + 1$ iterations over Δ.

Proof: obvious.

Lemma 2
Let f be the flow at the end of a Δ-phase. Then the maximum flow is smaller than $\text{val}(f) + m\Delta$.

Proof: less obvious, but simple:
- There must exist an $s-t$ cut in $G_f(\Delta)$ of zero capacity.
- In G_f this cut can have capacity at most $m\Delta$.
- This gives me an upper bound on the flow that I can still add.
Lemma 3

There are at most \(2m \) augmentations per scaling-phase.

Proof:

Let \(f \) be the flow at the end of the previous phase.

\[
\text{val}(f^*) \leq \text{val}(f) + 2m \Delta
\]

Each augmentation increases flow by \(\Delta \).

Theorem 4

We need \(O(m \log C) \) augmentations. The algorithm can be implemented in time \(O(m^2 \log C) \).
Lemma 3

There are at most $2m$ augmentations per scaling-phase.
Capacity Scaling

Lemma 3
There are at most $2m$ augmentations per scaling-phase.

Proof:
- Let f be the flow at the end of the previous phase.
Lemma 3

There are at most $2m$ augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $\text{val}(f^*) \leq \text{val}(f) + 2m\Delta$
Lemma 3

There are at most $2m$ augmentations per scaling-phase.

Proof:

- Let f be the flow at the end of the previous phase.
- $\text{val}(f^*) \leq \text{val}(f) + 2m\Delta$
- Each augmentation increases flow by Δ.
Lemma 3
There are at most $2m$ augmentations per scaling-phase.

Proof:
- Let f be the flow at the end of the previous phase.
- $\text{val}(f^*) \leq \text{val}(f) + 2m\Delta$
- Each augmentation increases flow by Δ.

Theorem 4
We need $\Theta(m \log C)$ augmentations. The algorithm can be implemented in time $\Theta(m^2 \log C)$.