Algorithm 6 highest-label\((G, s, t)\)

1. initialize preflow
2. foreach \(u \in V \setminus \{s, t\} \) do
 3. \(u.\text{current-neighbour} \leftarrow u.\text{neighbour-list-head} \)
4. while \(\exists \) active node \(u \) do
5. select active node \(u \) with highest label
6. discharge\((u)\)

Lemma 1

When using highest label the number of non-saturating pushes is only \(O(n^3) \).

A push from a node on level \(\ell \) can only “activate” nodes on levels strictly less than \(\ell \).

This means, after a non-saturating push from \(u \) a relabel is required to make \(u \) active again.

Hence, after \(n \) non-saturating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most \(n(\#\text{relabels} + 1) = O(n^3) \).

Question:

How do we find the next node for a discharge operation?

Since a discharge-operation is terminated by a non-saturating push this gives an upper bound of \(O(n^3) \) on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

Maintain lists \(L_i, i \in \{0, \ldots, 2n\} \), where list \(L_i \) contains active nodes with label \(i \) (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node \(u \) with label \(k \), traverse the lists \(L_k, L_{k-1}, \ldots, L_0 \), (in that order) until you find a non-empty list.

Unless the last (non-saturating) push was to \(s \) or \(t \) the list \(k-1 \) must be non-empty (i.e., the search takes constant time).
13.3 Highest Label

Hence, the total time required for searching for active nodes is at most
\[O(n^3) + n(\text{non-saturating-pushes-to-s-or-t}) \]

Lemma 2
The number of non-saturating pushes to \(s \) or \(t \) is at most \(O(n^2) \).

With this lemma we get

Theorem 3
The push-relabel algorithm with the rule highest-label takes time \(O(n^3) \).

Proof of the Lemma.

- We only show that the number of pushes to the source is at most \(O(n^2) \). A similar argument holds for the target.
- After a node \(v \) (which must have \(\ell(v) = n + 1 \)) made a non-saturating push to the source there needs to be another node whose label is increased from \(\leq n + 1 \) to \(n + 2 \) before \(v \) can become active again.
- This happens for every push that \(v \) makes to the source. Since, every node can pass the threshold \(n + 2 \) at most once, \(v \) can make at most \(n \) pushes to the source.
- As this holds for every node the total number of pushes to the source is at most \(O(n^2) \).