13.3 Highest Label

Algorithm 6 highest-label(G, s, t)

1: initialize preflow
2: foreach $u \in V \setminus \{s, t\}$ do
3: \hspace{1em} $u.$current-neighbour $\leftarrow u.$neighbour-list-head
4: while \exists active node u do
5: \hspace{1em} select active node u with highest label
6: \hspace{1em} discharge(u)
13.3 Highest Label

Lemma 1

Identiﬁcation

When using highest label the number of non-saturating pushes is only $O(n^3)$.

A push from a node on level ℓ can only “activate” nodes on levels strictly less than ℓ.

This means, after a non-saturating push from u a relabel is required to make u active again.

Hence, after n non-saturating pushes without an intermediate relabel there are no active nodes left.

Therefore, the number of non-saturating pushes is at most $n(\#relabels + 1) = O(n^3)$.
Since a discharge-operation is terminated by a non-saturating push this gives an upper bound of $O(n^3)$ on the number of discharge-operations.

The cost for relabels and saturating pushes can be estimated in exactly the same way as in the case of the generic push-relabel algorithm.

Question:
How do we find the next node for a discharge operation?
Maintain lists $L_i, i \in \{0, \ldots, 2n\}$, where list L_i contains active nodes with label i (maintaining these lists induces only constant additional cost for every push-operation and for every relabel-operation).

After a discharge operation terminated for a node u with label k, traverse the lists $L_k, L_{k-1}, \ldots, L_0$, (in that order) until you find a non-empty list.

Unless the last (non-saturating) push was to s or t the list $k−1$ must be non-empty (i.e., the search takes constant time).
13.3 Highest Label

Hence, the total time required for searching for active nodes is at most

$$O(n^3) + n(#\text{non-saturating-pushes-to-s-or-t})$$

Lemma 2
The number of non-saturating pushes to s or t is at most $O(n^2)$.

With this lemma we get

Theorem 3
The push-relabel algorithm with the rule highest-label takes time $O(n^3)$.
Proof of the Lemma.

- We only show that the number of pushes to the source is at most $O(n^2)$. A similar argument holds for the target.
- After a node v (which must have $\ell(v) = n + 1$) made a non-saturating push to the source there needs to be another node whose label is increased from $\leq n + 1$ to $n + 2$ before v can become active again.
- This happens for every push that v makes to the source. Since, every node can pass the threshold $n + 2$ at most once, v can make at most n pushes to the source.
- As this holds for every node the total number of pushes to the source is at most $O(n^2)$.