_________________________ |

1 Note that the cases do not cover all pos-
6.2 Master Theorem ! sibilities. !
Lemma 1
Lleta>1,b>1 and e > 0 denote constants. Consider the
recurrence

T(n) = aT(%) + f(n) .

Case 1.
If f(n) = O(nlo8r@ =€) then T(n) = O(n'o8r a),

Case 2.
If f(n) = O©(n'°% (@ 1ogk n) then T(n) = O(M°8 41ogk* 1 n
k > 0.

~

1]

Case 3.
If f(n) = Q(n'og@+€y and for sufficiently large n
af(%) < cf(n) for some constantc <1 then T(n) = O(f(n)).

m Ernst Mayr, Harald Racke 49/64

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b'e, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 50/64

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

olojolololololololololololo [o M T

m 6.2 Master Theorem
Ernst Mayr, Harald Racke 51/64

6.2 Master Theorem

This gives
log, n—1 n
_ .,logpa i i
T(n) =n + > af(bl.))
i=0
m 6.2 Master Theorem
Ernst Mayr, Harald Racke 52/64

Case 1. Now suppose that f(n) < cnloga—¢,

log, n—1 n
T(n) —nlogra = Z alf(ﬁ)
i=0
logyn-1 n \logya—c
se 3 a(y)
i=0
log, n—-1)
p-illogy a—€) _ pei(plogyay—i — peig—i| = CnIOgh a—e Z (be)l
i=0

Cnlogha—E(belogbn _ 1)/(be -1)

_ Cnlogbafe(ne _ 1)/(b6 -1)

Case 2. Now suppose that f(n) < cnlog»a,

log, n—1

T(n) —nlogrd = aif(%)

i=0

IA
o
[]
&H.
—
2B
~—
=}
&
S

=cnlo&ra 3

|
a
:i—'
Q)
@
N
]
—
o
gQ
S
S

Hence,

T(n) = O(n'*#%log,n) | T(n) = O(nB2logn).

_ c log,a ,,e _ €
= ﬁn vh(n 1)/(n°)
Hence,
T(n) < (be T 1>n1°gb<“> = T(n) = O(n'°8r9),
‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 53/64

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 54/64

Case 2. Now suppose that f(n) = cnlog 4,

log, n—1

T -nowe = Y aif(7)

|
o
:b—l
o
e
S
Q
—
o
agQ
&
S

Hence,

T(n) = Q(n'%%log,n) |= T(n) = Q82 logn).

Case 2. Now suppose that f(n) < cn'°% 4 (log), (n))k.

T(n) - nlosra = Z aif<£)

bﬁ k
n:h£=>€:logbn] = cnlogra Z <logb (ﬁ))

{
— cnlogr llz ik~ 1 gkt
i=1

~ %nlogb apk+1 ‘ = T(n) = O(n'og a1ogk+! n).

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 55/64

‘m 6.2 Master Theorem
Ernst Mayr, Harald Racke 56/64

Case 3. Now suppose that f(n) = dn'°8 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a'f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

logy, n—1

T(n) -no®a= % aif(ﬁ)
i=0
log, n—-1
< > cifm) +omosna)
i=0
a<1:3oa= 5L <] s fn) + (o)
Hence,
T(n) <O(f(n) = T(n) = @(f(n))_]

! Where did we use f(n) = Q(nlogpateyr :

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
. 1,00010011 B
1011001000

This gives that two n-bit integers can be added in time O(n).

m 6.2 Master Theorem
Ernst Mayr, Harald Racke 57/64

‘_I‘Iﬂm 6.2 Master Theorem
Ernst Mayr, Harald Racke 58/64

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an
m-bit integer B (m < n).

10001 X1011
10001

" -- - T - - -~ - T T T T oo oT o T T 1
e This is also nown as the “school ,
method” for multiplying integers. | 1 0 0 0 1 O

1

|

| » Note that the intermediate num- |

| . 0000000
1

1

bers that are generated can have :
at most m + n < 2n bits. |

_______________________ 10001000O0
10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n:
O((m+n)ym) =O9nm).

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B Bo ‘ X ’ Ay Ao

Then it holds that

A=A, -22 +Apand B=B; - 27 + By

Hence,

A-B=AB; 2"+ (A1Bo + AoB1) - 27 + AoBo

m 6.2 Master Theorem
Ernst Mayr, Harald Racke 59/64

m 6.2 Master Theorem
Ernst Mayr, Harald Racke 60/64

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

1: if [A| = |B] =1 then O(1)

2: return ag - bg O(1)

3: split A into Ag and A; On)

4: split B into By and B; On)

5: Zp — mult(Ay,B1) T(%)

6: Z1 — mult(Ay, Bg) + mult(Ag, B1) 2T (%) + O(n)
7: Zo — mult(Ag, By) T(%)

8: return Zp - 2" + 7 - 27 + Zo On)

We get the following recurrence:
n

T(n) = 4T(2

) +om) .

6.2 Master Theorem

m Ernst Mayr, Harald Racke 61/64

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(};) + f(n).
> Case 1: f(n) = O(nlogra—c) T(n) = O(n'ogra)
> Case 2: f(n) = O(nl°8ralogkn) T(n) = OM% a10gk* ! n)
> Case 3: f(n) = Q(nlosra+e) T(n) = O(f(n))

Inourcasea =4, b =2,and f(n) = O(n). Hence, we are in
Case 1, since n = O(n?¢€) = O(nlogra—c),

We get a running time of @ (n?) for our algorithm.

=> Not better then the “school method”.

6.2 Master Theorem

ﬂﬂm Ernst Mayr, Harald Racke

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bo + ApBy =Zy =12
—r —
= (Ap + A1) - (Bp + B1) — A1B1 — ApBo

Hence, :
Algorithm 4 mult(A, B)
1: if |A| = |B| = 1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A; On)
4: split B into By and B, On)
TA more precise | | 5¢ Z2 — mult(Ay, B1) T(3)
:(correct) analysis | | 6: Zg — mult(Ag, Bo) T(%)
i Id that 1
:y:;pui;yg 2 1| 720 mult(Ao+A1,Bo +B1) ~Z2~ Zo | T(3) + O(n)
1 needs time '| 8 return Zp - 2" + 71 - 22 + Z O(n)
(T3 +1)+0n).
m 6.2 Master Theorem
Ernst Mayr, Harald Racke 63/64

62/64
Example: Multiplying Two Integers
We get the following recurrence:
n
T(n) = 3T(§) +0n) .
Master Theorem: Recurrence: T[n] = aT(};) + f(n).
> Case 1: f(n) = O(nlosra—c) T(n) = O(nlosr)
> Case 2: f(n) = O(nl°8ralogkn) T(n) = OM% a10gk* ! n)
> Case 3: f(n) = Q(nlogra+e) T(n) =0(f(n))
Again we are in Case 1. We get a running time of
@(nlogz 3) ~ @(n1.59)_
A huge improvement over the “school method”.
m 6.2 Master Theorem
Ernst Mayr, Harald Racke 64/64

	Master Theorem

