Overview: Shortest Augmenting Paths

Lemma 1
The length of the shortest augmenting path never decreases.

Lemma 2
After at most $O(m)$ augmentations, the length of the shortest augmenting path strictly increases.
Overview: Shortest Augmenting Paths

Lemma 1
The length of the shortest augmenting path never decreases.

Lemma 2
After at most $\Theta(m)$ augmentations, the length of the shortest augmenting path strictly increases.
Overview: Shortest Augmenting Paths

Lemma 1
The length of the shortest augmenting path never decreases.

Lemma 2
After at most $O(m)$ augmentations, the length of the shortest augmenting path strictly increases.
Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 3
The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. This gives a running time of $O(m^2n)$.

Proof.
- We can find the shortest augmenting paths in time $O(mn)$ via BFS.
- There are at most $O(mn)$ augmentations for paths of exactly $k < n$ edges.
Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 3

The shortest augmenting path algorithm performs at most \(O(mn)\) augmentations. This gives a running time of \(O(m^2n)\).

Proof.

We can find the shortest augmenting paths in time \(O(m)\) via BFS.

There are \(O(mn)\) augmentations for paths of exactly \(k < n\) edges.

\[\square\]
Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 3

The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. This gives a running time of $O(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $O(m)$ via BFS.
- $O(m)$ augmentations for paths of exactly $k < n$ edges.
These two lemmas give the following theorem:

Theorem 3

The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. This gives a running time of $O(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $O(m)$ via BFS.
- $O(m)$ augmentations for paths of exactly $k < n$ edges.
Define the level $\ell(v)$ of a node as the length of the shortest $s-v$ path in G_f.
Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest $s-v$ path in G_f.

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.
Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest $s-v$ path in G_f.

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest $s-u$ path in G_f if it is a path in L_G.

Ernst Mayr, Harald Räcke
Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest $s-v$ path in G_f.

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u,v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest $s-u$ path in G_f if it is an $s-u$ path in L_G.
In the following we assume that the residual graph \(G_f \) does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.
Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.
Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:

- Bottleneck edges on the chosen path are deleted.
Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:
- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don’t have back edges so far.
Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:
- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don’t have back edges so far.

These changes cannot decrease the distance between s and t.
Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:
- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don’t have back edges so far.

These changes cannot decrease the distance between s and t.
Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:
- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don’t have back edges so far.

These changes cannot decrease the distance between s and t.
Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:

- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don’t have back edges so far.

These changes cannot decrease the distance between s and t.

\[
\begin{align*}
G_f & \quad L_G \\
\end{align*}
\]
Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.
Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that uses edges not in E_L has length larger than k, even when considering edges added to G_f during the round.
Shortest Augmenting Path

Second Lemma: After at most \(m \) augmentations the length of the shortest augmenting path strictly increases.

Let \(E_L \) denote the set of edges in graph \(L_G \) at the beginning of a round when the distance between \(s \) and \(t \) is \(k \).

An \(s \)-\(t \) path in \(G_f \) that uses edges not in \(E_L \) has length larger than \(k \), even when considering edges added to \(G_f \) during the round.

In each augmentation one edge is deleted from \(E_L \).
Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that uses edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L.
Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that uses edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L.
Shortest Augmenting Paths

Theorem 4
The shortest augmenting path algorithm performs at most $\Theta(mn)$ augmentations. Each augmentation can be performed in time $\Theta(m)$.

Theorem 5 (without proof)
There exist networks with $m = \Theta(n^2)$ that require $\Theta(mn)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:
There always exists a set of m augmentations that gives a maximum flow (why?).
Theorem 4

The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. Each augmentation can be performed in time $O(m)$.

Theorem 5 (without proof)

There exist networks with $m = \Theta(n^2)$ that require $O(mn)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:
There always exists a set of m augmentations that gives a maximum flow (why?).
Shortest Augmenting Paths

Theorem 4
The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. Each augmentation can be performed in time $O(m)$.

Theorem 5 (without proof)
There exist networks with $m = \Theta(n^2)$ that require $O(mn)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:
There always exists a set of m augmentations that gives a maximum flow (why?).
Shortest Augmenting Paths

Theorem 4
The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. Each augmentation can be performed in time $O(m)$.

Theorem 5 (without proof)
There exist networks with $m = \Theta(n^2)$ that require $O(mn)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:
There always exists a set of m augmentations that gives a maximum flow (why?).
Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $O(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $O(m)$ per augmentation for this).
Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $O(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $O(m)$ per augmentation for this).
Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L.

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.
Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest $s-t$ path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L.

When E_L does not contain an $s-t$ path anymore the distance between s and t strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.
Shortest Augmenting Paths

We maintain a subset \(E_L \) of the edges of \(G_f \) with the guarantee that a shortest \(s-t \) path using only edges from \(E_L \) is a shortest augmenting path.

With each augmentation some edges are deleted from \(E_L \).

When \(E_L \) does not contain an \(s-t \) path anymore the distance between \(s \) and \(t \) strictly increases.

Note that \(E_L \) is not the set of edges of the level graph but a subset of level-graph edges.
Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L.

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.
Suppose that the initial distance between s and t in G_f is k.

E_L is initialized as the level graph L_G.

Perform a DFS search to find a path from s to t using edges from E_L.

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L.

Suppose that the initial distance between \(s \) and \(t \) in \(G_f \) is \(k \).

\(E_L \) is initialized as the level graph \(L_G \).

Perform a DFS search to find a path from \(s \) to \(t \) using edges from \(E_L \).

Either you find \(t \) after at most \(n \) steps, or you end at a node \(v \) that does not have any outgoing edges.

You can delete incoming edges of \(v \) from \(E_L \).
Suppose that the initial distance between s and t in G_f is k.

E_L is initialized as the level graph L_G.

Perform a DFS search to find a path from s to t using edges from E_L.

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L.
Suppose that the initial distance between s and t in G_f is k.

E_L is initialized as the level graph L_G.

Perform a **DFS search** to find a path from s to t using edges from E_L.

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L.
Suppose that the initial distance between s and t in G_f is k.

E_L is initialized as the level graph L_G.

Perform a **DFS search** to find a path from s to t using edges from E_L.

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L.
Let a phase of the algorithm be defined by the time between two augmentations during which the distance between \(s \) and \(t \) strictly increases.

Initializing \(E_L \) for the phase takes time \(\Theta(m) \).

The total cost for searching for augmenting paths during a phase is at most \(\Theta(mn) \), since every search (successful (i.e., reaching \(t \)) or unsuccessful) decreases the number of edges in \(E_L \) and takes time \(\Theta(n) \).

The total cost for performing an augmentation during a phase is only \(\Theta(n) \). For every edge in the augmenting path one has to update the residual graph \(G_f \) and has to check whether the edge is still in \(E_L \) for the next search.

There are at most \(n \) phases. Hence, total cost is \(\Theta(mn^2) \).
Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most $\mathcal{O}(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2)$.
Let a phase of the algorithm be defined by the time between two augmentations during which the distance between \(s \) and \(t \) strictly increases.

Initializing \(E_L \) for the phase takes time \(O(m) \).

The total cost for searching for augmenting paths during a phase is at most \(O(mn) \), since every search (successful (i.e., reaching \(t \)) or unsuccessful) decreases the number of edges in \(E_L \) and takes time \(O(n) \).

The total cost for performing an augmentation during a phase is only \(O(n) \). For every edge in the augmenting path one has to update the residual graph \(G_f \) and has to check whether the edge is still in \(E_L \) for the next search.

There are at most \(n \) phases. Hence, total cost is \(O(mn^2) \).
Let a phase of the algorithm be defined by the time between two augmentations during which the distance between \(s \) and \(t \) strictly increases.

Initializing \(E_L \) for the phase takes time \(\mathcal{O}(m) \).

The total cost for searching for augmenting paths during a phase is at most \(\mathcal{O}(mn) \), since every search (successful (i.e., reaching \(t \)) or unsuccessful) decreases the number of edges in \(E_L \) and takes time \(\mathcal{O}(n) \).

The total cost for performing an augmentation during a phase is only \(\mathcal{O}(n) \). For every edge in the augmenting path one has to update the residual graph \(G_f \) and has to check whether the edge is still in \(E_L \) for the next search.

There are at most \(n \) phases. Hence, total cost is \(\mathcal{O}(mn^2) \).
Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_L for the phase takes time $O(m)$.

The total cost for searching for augmenting paths during a phase is at most $O(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $O(n)$.

The total cost for performing an augmentation during a phase is only $O(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $O(mn^2)$.
Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_L for the phase takes time $O(m)$.

The total cost for searching for augmenting paths during a phase is at most $O(mn)$, since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in E_L and takes time $O(n)$.

The total cost for performing an augmentation during a phase is only $O(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $O(mn^2)$.