Overview: Shortest Augmenting Paths

Lemma 1
The length of the shortest augmenting path never decreases.

Lemma 2
After at most $O(m)$ augmentations, the length of the shortest augmenting path strictly increases.

These two lemmas give the following theorem:

Theorem 3
The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. This gives a running time of $O(m^2n)$.

Proof.
- We can find the shortest augmenting paths in time $O(m)$ via BFS.
- $O(m)$ augmentations for paths of exactly $k < n$ edges.

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f.

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u,v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest s-u path in G_f if it is an s-u path in L_G.

In the following we assume that the residual graph G_f does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.
Shortest Augmenting Path

First Lemma:
The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:
- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don’t have back edges so far.

These changes cannot decrease the distance between s and t.

![Diagram](image1)

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that uses edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L.

![Diagram](image2)

Theorem 4
The shortest augmenting path algorithm performs at most $O(mn)$ augmentations. Each augmentation can be performed in time $O(m)$.

Theorem 5 (without proof)
There exist networks with $m = \Theta(n^2)$ that require $O(mn)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:
There always exists a set of m augmentations that gives a maximum flow (why?).
Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest s-t path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L.

When E_L does not contain an s-t path anymore the distance between s and t strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_L for the phase takes time $O(m)$.

The total cost for searching for augmenting paths during a phase is at most $O(mn)$, since every search (successful i.e., reaching t or unsuccessful) decreases the number of edges in E_L and takes time $O(n)$.

The total cost for performing an augmentation during a phase is only $O(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $O(mn^2)$.

Suppose that the initial distance between s and t in G_f is k.

E_L is initialized as the level graph L_G.

Perform a DFS search to find a path from s to t using edges from E_L.

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L.