7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

Let $|L_1|$ denote the number of elements in the “express lane”, and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + |L_0|$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

How can we improve the search-operation?

Add an express lane:

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$-th item from list L_{i-1}.

Search(x) ($k + 1$ lists L_0, \ldots, L_k)

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left|\frac{|L_{k-1}|}{L_k}\right| + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left|\frac{|L_{k-2}|}{L_{k-1}}\right| + 2$ steps.
- \ldots
- At most $|L_k| + \sum_{i=1}^{k} \frac{L_{i-1}}{L_i} + 3(k + 1)$ steps.

Choosing $k = \Theta(\log n)$ gives a logarithmic running time.
How to do insert and delete?

- If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!

Insert:
- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1,2,\ldots\}$ of trials needed.
- Insert x into lists L_0,\ldots,L_{t-1}.

Delete:
- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.

High Probability

Definition 1 (High Probability)
We say a randomized algorithm has running time $\mathcal{O}(\log n)$ with high probability if for any constant α the running time is at most $\mathcal{O}(\log n)$ with probability at least $1 - \frac{1}{n^\alpha}$.

Here the \mathcal{O}-notation hides a constant that may depend on α.
High Probability

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \land \cdots \land E_\ell] = 1 - \Pr[\bar{E}_1 \lor \cdots \lor \bar{E}_\ell] \geq 1 - n^c \cdot n^{-\alpha} = 1 - n^{c-\alpha}.$$

This means $\Pr[E_1 \land \cdots \land E_\ell]$ holds with high probability.

7.6 Skip Lists

Lemma 2

A search (and, hence, also insert and delete) in a skip list with n elements takes time $O(\log n)$ with high probability (w. h. p.).

7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $1/2$ and left with probability $1/2$.

We show that w.h.p:

- A “long” search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k.

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.

The probability of the event $E_{z,k}$, which represents a search path of length z and does not visit a list above L_k, can be bounded as follows:

$$\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}].$$

Choosing $k = \gamma \log n$ with $\gamma \geq 1$ and $z = (\beta + \alpha)\gamma \log n$,

$$\Pr[\text{at most } k \text{ heads in } z \text{ trials}] \leq \left(\frac{ez}{k}\right)^k 2^{-k(z-k)} \leq \left(\frac{2ez}{2\beta k}\right)^k n^{-\alpha} \leq \left(\frac{2e(\beta + \alpha)}{2^\beta}\right)^k n^{-\alpha}$$

Now, choosing $\beta = 6\alpha$ gives

$$\Pr[\text{at most } k \text{ heads in } z \text{ trials}] \leq \left(\frac{42\alpha}{64\alpha}\right)^k n^{-\alpha} \leq n^{-\alpha}$$

for $\alpha \geq 1$.

So far, we fixed $k = \gamma \log n$, $\gamma \geq 1$, and $z = 7\alpha \gamma \log n$, $\alpha \geq 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \leq n 2^{-(k+1)} \leq n^{-(\gamma - 1)}.$$

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold.

Hence,

$$\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}] \leq n^{-\alpha} + n^{-(\gamma - 1)}.$$

This means, the search requires at most z steps, w.h.p.