7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$

\[\infty \leftarrow 5 \leftarrow 8 \leftarrow 10 \leftarrow 12 \leftarrow 14 \leftarrow 18 \leftarrow 23 \leftarrow 26 \leftarrow 28 \leftarrow 35 \leftarrow 43 \leftarrow \infty \]
Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
7.6 Skip Lists

Why do we not use a list for implementing the ADT Dynamic Set?

- time for search $\Theta(n)$
- time for insert $\Theta(n)$ (dominated by searching the item)
- time for delete $\Theta(1)$ if we are given a handle to the object, otw. $\Theta(n)$
7.6 Skip Lists

How can we improve the search-operation?
7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:
How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + |L_0| - |L_1|$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.
How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the "express lane," and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + |L_0| (\text{ignoring additive constants})$.

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

7.6 Skip Lists
7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + |L_0| (ignoring additive constants)$

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.
7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the “express lane”, and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + |L_0| |L_1|$ (ignoring additive constants).

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.
7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + |L_0| (\text{ignoring additive constants})$.

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.
7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the “express lane”, and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + |L_0|$ (ignoring additive constants)

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.
7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

-∞ → 5 → 8 → 10 → 12 → 14 → 18 → 23 → 26 → 28 → 35 → 43 → ∞

Let $|L_1|$ denote the number of elements in the “express lane”, and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + |L_0| = O(\sqrt{n})$.

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.
7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the "express lane", and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + |L_0| - |L_1|$ (ignoring additive constants).

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.
How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the “express lane”, and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + |L_0|$ (ignoring additive constants).

Choose $|L_1| = \sqrt{n}$. Then search time $\Theta(\sqrt{n})$.

7.6 Skip Lists
7.6 Skip Lists

How can we improve the search-operation?

Add an express lane:

Let \(|L_1|\) denote the number of elements in the “express lane”, and \(|L_0|=n\) the number of all elements (ignoring dummy elements).
How can we improve the search-operation?

Add an express lane:

Let $|L_1|$ denote the number of elements in the “express lane”, and $|L_0| = n$ the number of all elements (ignoring dummy elements).

Worst case search time: $|L_1| + \frac{|L_0|}{|L_1|}$ (ignoring additive constants)
How can we improve the search-operation?

Add an express lane:

Let \(|L_1|\) denote the number of elements in the “express lane”, and \(|L_0| = n\) the number of all elements (ignoring dummy elements).

Worst case search time: \(|L_1| + \frac{|L_0|}{|L_1|}\) (ignoring additive constants)

Choose \(|L_1| = \sqrt{n}\). Then search time \(\Theta(\sqrt{n})\).
7.6 Skip Lists

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$-th item from list L_{i-1}.
Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$-th item from list L_{i-1}.

Search(x) ($k + 1$ lists L_0, \ldots, L_k)
Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$-th item from list L_{i-1}.

Search(x) ($k + 1$ lists L_0, \ldots, L_k)
- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
7.6 Skip Lists

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$-th item from list L_{i-1}.

Search(x) ($k + 1$ lists L_0, \ldots, L_k)

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\lceil \frac{|L_{k-1}|}{|L_k|+1} \rceil + 2$ steps.
7.6 Skip Lists

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$-th item from list L_{i-1}.

Search(x) ($k + 1$ lists L_0, \ldots, L_k)

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\lceil \frac{|L_{k-1}|}{|L_k|+1} \rceil + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\lceil \frac{|L_{k-2}|}{|L_{k-1}|+1} \rceil + 2$ steps.
Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$-th item from list L_{i-1}.

Search(x) ($k + 1$ lists L_0, \ldots, L_k)

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\left\lceil \frac{|L_{k-1}|}{|L_k|+1} \right\rceil + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\left\lceil \frac{|L_{k-2}|}{|L_{k-1}|+1} \right\rceil + 2$ steps.
- ...
7.6 Skip Lists

Add more express lanes. Lane L_i contains roughly every $\frac{L_{i-1}}{L_i}$-th item from list L_{i-1}.

Search(x) ($k + 1$ lists L_0, \ldots, L_k)

- Find the largest item in list L_k that is smaller than x. At most $|L_k| + 2$ steps.
- Find the largest item in list L_{k-1} that is smaller than x. At most $\lceil \frac{|L_{k-1}|}{|L_k|+1} \rceil + 2$ steps.
- Find the largest item in list L_{k-2} that is smaller than x. At most $\lceil \frac{|L_{k-2}|}{|L_{k-1}|+1} \rceil + 2$ steps.
- ...
- At most $|L_k| + \sum_{i=1}^{k} \frac{L_{i-1}}{L_i} + 3(k + 1)$ steps.
Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k}n$.
Choose ratios between list-lengths evenly, i.e., $\frac{|L_{i-1}|}{|L_i|} = r$, and, hence, $L_k \approx r^{-k} n$.

Worst case running time is: $\mathcal{O}(r^{-k} n + kr)$.

Choosing $k = \Theta(\log n)$ gives a logarithmic running time.
Choose ratios between list-lengths evenly, i.e., \(\frac{|L_{i-1}|}{|L_i|} = r \), and, hence, \(L_k \approx r^{-k}n \).

Worst case running time is: \(O(r^{-k}n + kr) \).

Choose \(r = n^{\frac{1}{k+1}} \). Then

\[
r^{-k}n + kr
\]
Choose ratios between list-lengths evenly, i.e., \(\frac{|L_{i-1}|}{|L_i|} = r \), and, hence, \(L_k \approx r^{-k} n \).

Worst case running time is: \(O(r^{-k} n + kr) \).

Choose \(r = n^{\frac{1}{k+1}} \). Then

\[
r^{-k} n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k} n + kn^{\frac{1}{k+1}}
\]
Choose ratios between list-lengths evenly, i.e., \(\frac{|L_{i-1}|}{|L_i|} = r \), and, hence, \(L_k \approx r^{-k}n \).

Worst case running time is: \(\mathcal{O}(r^{-k}n + kr) \).

Choose \(r = n^{\frac{1}{k+1}} \). Then

\[
r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}
\]

\[
= n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}
\]
Choose ratios between list-lengths evenly, i.e., \(\frac{|L_{i-1}|}{|L_i|} = r \), and, hence, \(L_k \approx r^{-k}n \).

Worst case running time is: \(O(r^{-k}n + kr) \).

Choose \(r = n^{\frac{1}{k+1}} \). Then

\[
r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}
\]

\[
= n^{1-k(\frac{1}{k+1})} + kn^{\frac{1}{k+1}}
\]

\[
= (k + 1)n^{\frac{1}{k+1}}.
\]
Choose ratios between list-lengths evenly, i.e., \(\frac{|L_{i-1}|}{|L_i|} = r \), and, hence, \(L_k \approx r^{-k}n \).

Worst case running time is: \(\mathcal{O}(r^{-k}n + kr) \).

Choose \(r = n^{\frac{1}{k+1}} \). Then

\[
 r^{-k}n + kr = \left(n^{\frac{1}{k+1}}\right)^{-k}n + kn^{\frac{1}{k+1}}
 = n^{1-\frac{k}{k+1}} + kn^{\frac{1}{k+1}}
 = (k + 1)n^{\frac{1}{k+1}}.
\]

Choosing \(k = \Theta(\log n) \) gives a logarithmic running time.
7.6 Skip Lists

How to do insert and delete?

If we want that in \(L_i \) we always skip over roughly the same number of elements in \(L_{i-1} \), an insert or delete may require a lot of re-organisation.

Use randomization instead!
How to do insert and delete?

▶ If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!
How to do insert and delete?

- If we want that in L_i we always skip over roughly the same number of elements in L_{i-1} an insert or delete may require a lot of re-organisation.

Use randomization instead!
7.6 Skip Lists

Insert:
- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, \ldots\}$ of trials needed.
- Insert x into lists L_0, \ldots, L_{t-1}.

Delete:
- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.
Insert:

- A search operation gives you the insert position for element \(x \) in every list.
- Flip a coin until it shows head, and record the number \(t \in \{1, 2, \ldots\} \) of trials needed.
- Insert \(x \) into lists \(L_0, \ldots, L_{t-1} \).

Delete:

- You get all predecessors via backward pointers.
- Delete \(x \) in all lists it actually appears in.

The time for both operations is dominated by the search time.
7.6 Skip Lists

Insert:

▶ A search operation gives you the insert position for element \(x \) in every list.
▶ Flip a coin until it shows head, and record the number \(t \in \{1, 2, \ldots\} \) of trials needed.
▶ Insert \(x \) into lists \(L_0, \ldots, L_{t-1} \).

Delete:

▶ You get all predecessors via backward pointers.
▶ Delete \(x \) in all lists it actually appears in.

The time for both operations is dominated by the search time.
7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, \ldots\}$ of trials needed.
- Insert x into lists L_0, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.
Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, \ldots\}$ of trials needed.
- Insert x into lists L_0, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.
7.6 Skip Lists

Insert:
- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, \ldots\}$ of trials needed.
- Insert x into lists L_0, \ldots, L_{t-1}.

Delete:
- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.
7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, \ldots \}$ of trials needed.
- Insert x into lists L_0, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.
7.6 Skip Lists

Insert:

- A search operation gives you the insert position for element x in every list.
- Flip a coin until it shows head, and record the number $t \in \{1, 2, \ldots\}$ of trials needed.
- Insert x into lists L_0, \ldots, L_{t-1}.

Delete:

- You get all predecessors via backward pointers.
- Delete x in all lists it actually appears in.

The time for both operations is dominated by the search time.
7.6 Skip Lists

Insert (35):

-∞ 14 26 ∞
-∞ 10 14 26 ∞
-∞ 8 10 12 14 26 28 43 ∞
-∞ 5 8 10 12 14 18 23 26 28 43 ∞
7.6 Skip Lists

Insert (35):
7.6 Skip Lists

Insert (35):
Insert (35):
7.6 Skip Lists

Insert (35):
Insert (35):
7.6 Skip Lists

Insert (35):
7.6 Skip Lists

Insert (35):
7.6 Skip Lists

Insert (35):
Insert (35):
High Probability

Definition 1 (High Probability)

We say a randomized algorithm has running time $O(\log n)$ with high probability if for any constant α the running time is at most $O(\log n)$ with probability at least $1 - \frac{1}{n^\alpha}$.

Here the O-notation hides a constant that may depend on α.
High Probability

Definition 1 (High Probability)
We say a randomized algorithm has running time $\Theta(\log n)$ with high probability if for any constant α the running time is at most $\Theta(\log n)$ with probability at least $1 - \frac{1}{n^\alpha}$.

Here the Θ-notation hides a constant that may depend on α.
High Probability

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\Theta(\log n)$).
High Probability

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \land \cdots \land E_\ell]$$
High Probability

Suppose there are \textit{polynomially} many events E_1, E_2, \ldots, E_ℓ, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \land \cdots \land E_\ell] = 1 - \Pr[\bar{E}_1 \lor \cdots \lor \bar{E}_\ell]$$
High Probability

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $\mathcal{O}(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \land \cdots \land E_\ell] = 1 - \Pr[\bar{E}_1 \lor \cdots \lor \bar{E}_\ell]$$

$$\geq 1 - n^c \cdot n^{-\alpha}$$
High Probability

Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \land \cdots \land E_\ell] = 1 - \Pr[\bar{E}_1 \lor \cdots \lor \bar{E}_\ell] \geq 1 - n^c \cdot n^{-\alpha} = 1 - n^{c-\alpha}.$$
Suppose there are polynomially many events E_1, E_2, \ldots, E_ℓ, $\ell = n^c$ each holding with high probability (e.g. E_i may be the event that the i-th search in a skip list takes time at most $O(\log n)$).

Then the probability that all E_i hold is at least

$$\Pr[E_1 \land \cdots \land E_\ell] = 1 - \Pr[\bar{E}_1 \lor \cdots \lor \bar{E}_\ell]$$

$$\geq 1 - n^c \cdot n^{-\alpha}$$

$$= 1 - n^{c-\alpha}.$$

This means $\Pr[E_1 \land \cdots \land E_\ell]$ holds with high probability.
Lemma 2

A search (and, hence, also insert and delete) in a skip list with \(n \) elements takes time \(\Theta(\log n) \) with high probability (w. h. p.).
7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p.:

- A "long" search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p:

- A "long" search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p.:

▶ A “long” search path must also go very high.
▶ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p.:

▶ A "long" search path must also go very high.

▶ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p.:

▶ A “long” search path must also go very high.
▶ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p.:

- A "long" search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p.:

- A "long" search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
Backward analysis:
7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p:

▶ A “long” search path must also go very high.
▶ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p.:

\triangleright A “long” search path must also go very high.

\triangleright There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with $\frac{1}{2}$.

We show that w.h.p:

▶ A “long” search path must also go very high.
▶ There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.
7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p:

- A “long” search path must also go very high.
Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p:

- A “long” search path must also go very high.
- There are no elements in high lists.
7.6 Skip Lists

Backward analysis:

At each point the path goes up with probability $\frac{1}{2}$ and left with probability $\frac{1}{2}$.

We show that w.h.p:

- A “long” search path must also go very high.
- There are no elements in high lists.

From this it follows that w.h.p. there are no long paths.
\[(\frac{n}{k})^k \leq \binom{n}{k} \leq \left(\frac{en}{k}\right)^k\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k} \right)^k
\]
\[
\left(\frac{n}{k}\right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k}\right)^k
\]

\[
\binom{n}{k} = \frac{n!}{k! \cdot (n - k)!}
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1) \cdot \ldots \cdot 1}{k \cdot \ldots \cdot 1}
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \geq \left(\frac{n}{k} \right)^k
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \geq \left(\frac{n}{k} \right)^k
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \geq \left(\frac{n}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!}
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \geq \left(\frac{n}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!} \leq \frac{n^k}{k!}
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \geq \left(\frac{n}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!} \leq \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}
\]
\[
\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \geq \left(\frac{n}{k} \right)^k
\]

\[
\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!} \leq \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!}
\]

\[
= \left(\frac{n}{k} \right)^k \cdot \frac{k^k}{k!}
\]
\[\left(\frac{n}{k} \right)^k \leq \binom{n}{k} \leq \left(\frac{en}{k} \right)^k \]

\[\binom{n}{k} = \frac{n!}{k! \cdot (n-k)!} = \frac{n \cdot \ldots \cdot (n-k+1)}{k \cdot \ldots \cdot 1} \geq \left(\frac{n}{k} \right)^k \]

\[\binom{n}{k} = \frac{n \cdot \ldots \cdot (n-k+1)}{k!} \leq \frac{n^k}{k!} = \frac{n^k \cdot k^k}{k^k \cdot k!} \]

\[= \left(\frac{n}{k} \right)^k \cdot \frac{k^k}{k!} \leq \left(\frac{en}{k} \right)^k \]
Let \(E_{z,k} \) denote the event that a search path is of length \(z \) (number of edges) but does not visit a list above \(L_k \). In particular, this means that during the construction in the backward analysis we see at most \(k \) heads (i.e., coin flips that tell you to go up) in \(z \) trials.
Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k.
Let $E_{z,k}$ denote the event that a search path is of length z (number of edges) but does not visit a list above L_k.

In particular, this means that during the construction in the backward analysis we see at most k heads (i.e., coin flips that tell you to go up) in z trials.
Pr[$E_{z,k}$]
Pr[$E_{z,k}$] \leq \text{Pr[at most k heads in z trials]}

\[\leq (2e)^{z} \cdot n - \alpha \leq n - \alpha \quad \text{for } \alpha \geq 1. \]
Pr[\(E_{z,k}\)] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}] \\
\leq \binom{z}{k} 2^{-(z-k)}
Pr\[E_{z,k}\] \leq Pr[\text{at most } k \text{ heads in } z \text{ trials}]

\leq \left(\frac{z}{k}\right) 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)}
Pr[$E_{z,k}$] \leq Pr[at most k heads in z trials]

$\leq \left(\frac{z}{k}\right)2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$
Pr\[E_{z,k}\] \leq \text{Pr[at most } k \text{ heads in } z \text{ trials]} \\
\leq \binom{z}{k}2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k2^{-z} \\

\text{choosing } k = \gamma \log n \text{ with } \gamma \geq 1 \text{ and } z = (\beta + \alpha)\gamma \log n
Pr\([E_{z,k}]\) ≤ Pr\([\text{at most } k \text{ heads in } z \text{ trials}]\)

\[
\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}
\]

choosing \(k = \gamma \log n\) with \(\gamma \geq 1\) and \(z = (\beta + \alpha)\gamma \log n\)

\[
\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-\gamma \alpha}
\]
Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]

\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}

choosing \(k = \gamma \log n \) with \(\gamma \geq 1 \) and \(z = (\beta + \alpha)\gamma \log n \)

\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2\beta k}\right)^k \cdot n^{-\alpha}
Pr[$E_{z,k}$] ≤ Pr[at most k heads in z trials]

\[\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k} \right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k} \right)^k 2^{-z} \]

choosing $k = \gamma \log n$ with $\gamma \geq 1$ and $z = (\beta + \alpha) \gamma \log n$

\[\leq \left(\frac{2ez}{k} \right)^k 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2\beta k} \right)^k \cdot n^{-\alpha} \]

\[\leq \left(\frac{2e(\beta + \alpha)}{2\beta} \right)^k n^{-\alpha} \]
Pr[$E_{z,k}$] \leq Pr[at most k heads in z trials]

$\leq \left(\frac{z}{k}\right)2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}$

choosing $k = \gamma \log n$ with $\gamma \geq 1$ and $z = (\beta + \alpha)\gamma \log n$

$\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2^\beta k}\right)^k \cdot n^{-\alpha}$

$\leq \left(\frac{2e(\beta + \alpha)}{2^\beta}\right)^k n^{-\alpha}$

now choosing $\beta = 6\alpha$ gives
Pr\[E_{z,k}\] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}]

\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k}\right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k}\right)^k 2^{-z}

choosing \(k = \gamma \log n \) with \(\gamma \geq 1 \) and \(z = (\beta + \alpha) \gamma \log n \)

\leq \left(\frac{2ez}{k}\right)^k 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2^\beta k}\right)^k \cdot n^{-\alpha}

\leq \left(\frac{2e(\beta + \alpha)}{2^\beta}\right)^k n^{-\alpha}

now choosing \(\beta = 6\alpha \) gives

\leq \left(\frac{42\alpha}{64\alpha}\right)^k n^{-\alpha}
\[\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}] \]

\[\leq \binom{z}{k} 2^{-(z-k)} \leq \left(\frac{ez}{k} \right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k} \right)^k 2^{-z} \]

choosing \(k = \gamma \log n \) with \(\gamma \geq 1 \) and \(z = (\beta + \alpha) \gamma \log n \)

\[\leq \left(\frac{2ez}{k} \right)^k 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2\beta k} \right)^k \cdot n^{-\alpha} \]

\[\leq \left(\frac{2e(\beta + \alpha)}{2\beta} \right)^k n^{-\alpha} \]

now choosing \(\beta = 6\alpha \) gives

\[\leq \left(\frac{42\alpha}{64\alpha} \right)^k n^{-\alpha} \leq n^{-\alpha} \]
7.6 Skip Lists

\[\Pr[E_{z,k}] \leq \Pr[\text{at most } k \text{ heads in } z \text{ trials}] \]

\[\leq \left(\frac{z}{k} \right) 2^{-(z-k)} \leq \left(\frac{ez}{k} \right)^k 2^{-(z-k)} \leq \left(\frac{2ez}{k} \right)^k 2^{-z} \]

choosing \(k = \gamma \log n \) with \(\gamma \geq 1 \) and \(z = (\beta + \alpha)\gamma \log n \)

\[\leq \left(\frac{2ez}{k} \right)^k 2^{-\beta k} \cdot n^{-\gamma \alpha} \leq \left(\frac{2ez}{2\beta k} \right)^k \cdot n^{-\alpha} \]

\[\leq \left(\frac{2e(\beta + \alpha)}{2\beta} \right)^k n^{-\alpha} \]

now choosing \(\beta = 6\alpha \) gives

\[\leq \left(\frac{42\alpha}{64\alpha} \right)^k n^{-\alpha} \leq n^{-\alpha} \]

for \(\alpha \geq 1 \).
So far we fixed $k = \gamma \log n$, $\gamma \geq 1$, and $z = 7 \alpha \gamma \log n$, $\alpha \geq 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \leq n - (k + 1) \leq n - (\gamma - 1).$$

For the search to take at least $z = 7 \alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold.

Hence,

$$\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}] \leq n - \alpha + n - (\gamma - 1).$$

This means, the search requires at most z steps, w.h.p.
7.6 Skip Lists

So far we fixed $k = \gamma \log n$, $\gamma \geq 1$, and $z = 7\alpha \gamma \log n$, $\alpha \geq 1$.
So far we fixed \(k = \gamma \log n, \ \gamma \geq 1, \) and \(z = 7\alpha \gamma \log n, \ \alpha \geq 1. \)

This means that a search path of length \(\Omega(\log n) \) visits a list on a level \(\Omega(\log n) \), w.h.p.
7.6 Skip Lists

So far we fixed $k = \gamma \log n$, $\gamma \geq 1$, and $z = 7\alpha\gamma \log n$, $\alpha \geq 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then
7.6 Skip Lists

So far we fixed $k = \gamma \log n$, $\gamma \geq 1$, and $z = 7\alpha\gamma \log n$, $\alpha \geq 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \leq n2^{-(k+1)} \leq n^{-(\gamma-1)}.$$
7.6 Skip Lists

So far we fixed \(k = \gamma \log n, \ \gamma \geq 1, \) and \(z = 7\alpha \gamma \log n, \ \alpha \geq 1. \)

This means that a search path of length \(\Omega(\log n) \) visits a list on a level \(\Omega(\log n) \), w.h.p.

Let \(A_{k+1} \) denote the event that the list \(L_{k+1} \) is non-empty. Then

\[
\Pr[A_{k+1}] \leq n2^{-(k+1)} \leq n^{-(\gamma-1)}.
\]

For the search to take at least \(z = 7\alpha \gamma \log n \) steps either the event \(E_{z,k} \) or the event \(A_{k+1} \) must hold.
So far we fixed $k = \gamma \log n$, $\gamma \geq 1$, and $z = 7\alpha \gamma \log n$, $\alpha \geq 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \leq n2^{-(k+1)} \leq n^{-(\gamma-1)}.$$

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

$$\Pr[\text{search requires } z \text{ steps}]$$
7.6 Skip Lists

So far we fixed $k = \gamma \log n$, $\gamma \geq 1$, and $z = 7\alpha \gamma \log n$, $\alpha \geq 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \leq n 2^{-(k+1)} \leq n^{-(\gamma-1)}.$$

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

$$\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}]$$
7.6 Skip Lists

So far we fixed \(k = \gamma \log n, \gamma \geq 1 \), and \(z = 7\alpha \gamma \log n, \alpha \geq 1 \).

This means that a search path of length \(\Omega(\log n) \) visits a list on a level \(\Omega(\log n) \), w.h.p.

Let \(A_{k+1} \) denote the event that the list \(L_{k+1} \) is non-empty. Then

\[
\Pr[A_{k+1}] \leq n2^{-(k+1)} \leq n^{-(\gamma-1)}.
\]

For the search to take at least \(z = 7\alpha \gamma \log n \) steps either the event \(E_{z,k} \) or the event \(A_{k+1} \) must hold.

Hence,

\[
\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}]
\leq n^{-\alpha} + n^{-(\gamma-1)}
\]
7.6 Skip Lists

So far we fixed $k = \gamma \log n$, $\gamma \geq 1$, and $z = 7\alpha \gamma \log n$, $\alpha \geq 1$.

This means that a search path of length $\Omega(\log n)$ visits a list on a level $\Omega(\log n)$, w.h.p.

Let A_{k+1} denote the event that the list L_{k+1} is non-empty. Then

$$\Pr[A_{k+1}] \leq n2^{-(k+1)} \leq n^{-(\gamma-1)}.$$

For the search to take at least $z = 7\alpha \gamma \log n$ steps either the event $E_{z,k}$ or the event A_{k+1} must hold. Hence,

$$\Pr[\text{search requires } z \text{ steps}] \leq \Pr[E_{z,k}] + \Pr[A_{k+1}]$$

$$\leq n^{-\alpha} + n^{-(\gamma-1)}$$

This means, the search requires at most z steps, w.h.p.