Splay Trees

Disadvantage of balanced search trees:
- worst case; no advantage for easy inputs
- additional memory required
- complicated implementation

Splay Trees:
+ after access, an element is moved to the root; \(\text{splay}(x)\)
 repeated accesses are faster
- only amortized guarantee
- read-operations change the tree

\[\begin{align*}
\text{find}(x) & : \text{search for } x \text{ according to a search tree} \\
& \quad \triangleright \text{let } \bar{x} \text{ be last element on search-path} \\
& \quad \triangleright \text{splay}(\bar{x})
\end{align*}\]

\[\begin{align*}
\text{insert}(x) & : \text{search for } x; \text{splay}(x); \text{remove } x \\
& \quad \triangleright \text{search largest element } \bar{x} \text{ in } A \\
& \quad \triangleright \text{splay}(\bar{x}) \text{ (on subtree } A) \\
& \quad \triangleright \text{connect root of } B \text{ as right child of } \bar{x}
\end{align*}\]
Move to Root

How to bring element to root?
- one (bad) option: `moveToRoot(x)`
- iteratively do rotation around parent of `x` until `x` is root
- if `x` is left child do right rotation o/w left rotation

Splay: Zig Case

better option `splay(x)`:
- zig case: if `x` is child of root do left rotation or right rotation around parent

Splay: Zigzag Case

better option `splay(x)`:
- zigzag case: if `x` is right child and parent of `x` is left child (or `x` left child parent of `x` right child)
- do double right rotation around grand-parent (resp. double left rotation)

Double Rotations
Splay: Zigzag Case

- zigzag case: if \(x \) is left child and parent of \(x \) is left child (or \(x \) right child, parent of \(x \) right child)
- do right rotation around grand-parent followed by right rotation around parent (resp. left rotations)

better option \(\text{splay}(x) \):

- zigzag case: if \(x \) is left child and parent of \(x \) is left child (or \(x \) right child, parent of \(x \) right child)
- do right rotation around grand-parent followed by right rotation around parent (resp. left rotations)
Static Optimality

Suppose we have a sequence of m find-operations. \(\text{find}(x) \) appears \(h_x \) times in this sequence.

The cost of a static search tree \(T \) is:

\[
\text{cost}(T) = m + \sum_x h_x \text{depth}_T(x)
\]

The total cost for processing the sequence on a splay-tree is \(O(\text{cost}(T_{\text{min}})) \), where \(T_{\text{min}} \) is an optimal static search tree.

Dynamic Optimality

Let \(S \) be a sequence with \(m \) find-operations.

Let \(A \) be a data-structure based on a search tree:

- the cost for accessing element \(x \) is \(1 + \text{depth}(x) \);
- after accessing \(x \) the tree may be re-arranged through rotations;

Conjecture:
A splay tree that only contains elements from \(S \) has cost \(O(\text{cost}(A,S)) \), for processing \(S \).

Amortized Analysis

Definition 2
A data structure with operations \(\text{op}_1(), \ldots, \text{op}_k() \) has amortized running times \(t_1, \ldots, t_k \) for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most \(n \) elements, and let \(k_i \) denote the number of occurrences of \(\text{op}_i() \) within this sequence. Then the actual running time must be at most \(\sum_i k_i \cdot t_i(n) \).
Potential Method

Introduce a potential for the data structure.

- $\Phi(D_i)$ is the potential after the i-th operation.
- Amortized cost of the i-th operation is $\hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1})$.
- Show that $\Phi(D_i) \geq \Phi(D_0)$.

Then

$$\sum_{i=1}^{k} c_i \leq \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i$$

This means the amortized costs can be used to derive a bound on the total cost.

Example: Stack

Use potential function $\Phi(S) =$ number of elements on the stack.

Amortized cost:

- S. push(): cost
 $$\hat{c}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 = 2.$$
 Note that the analysis becomes wrong if pop() or multipop() are called on an empty stack.
- S. pop(): cost
 $$\hat{c}_{\text{pop}} = C_{\text{pop}} + \Delta \Phi = 1 - 1 = 0.$$
- S. multipop(k): cost
 $$\hat{c}_{\text{mp}} = C_{\text{mp}} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \leq 0.$$

Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs one time-unit.

Incrementing an n-bit binary counter may require to examine n-bits, and maybe change them.

Actual cost:

- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is $k + 1$, where k is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has $k = 1$).
Example: Binary Counter

Choose potential function $\Phi(x) = k$, where k denotes the number of ones in the binary representation of x.

Amortized cost:

- Changing bit from 0 to 1:
 $\hat{C}_{0\rightarrow 1} = C_{0\rightarrow 1} + \Delta \Phi = 1 + 1 \leq 2$.

- Changing bit from 1 to 0:
 $\hat{C}_{1\rightarrow 0} = C_{1\rightarrow 0} + \Delta \Phi = 1 - 1 \leq 0$.

- Increment: Let k denotes the number of consecutive ones in the least significant bit-positions. An increment involves k $(1 \rightarrow 0)$-operations, and one $(0 \rightarrow 1)$-operation.

Hence, the amortized cost is $k\hat{C}_{1\rightarrow 0} + \hat{C}_{0\rightarrow 1} \leq 2$.

Splay Trees

Potential function for splay trees:

- **size** $s(x) = |T_x|$
- **rank** $r(x) = \log_2(s(x))$
- $\Phi(T) = \sum_{v \in T} r(v)$

Amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1 plus the number of rotations.

Splay: Zig Case

$$\Delta \Phi = r'(x) + r'(p) - r(x) - r(p)$$
$$= r'(p) - r(x)$$
$$\leq r'(x) - r(x)$$

$\text{cost}_{\text{zig}} \leq 1 + 3(r'(x) - r(x))$

Splay: Zigzig Case

$$\Delta \Phi = r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)$$
$$= r'(p) + r'(g) - r(x) - r(p)$$
$$\leq r'(x) + r'(g) - r(x) - r(x)$$
$$= r'(x) + r'(g) + r(x) - 3r'(x) + 3r'(x) - r(x) - 2r(x)$$
$$= -2r'(x) + r'(g) + r(x) + 3(r'(x) - r(x))$$
$$\leq -2 + 3(r'(x) - r(x)) \Rightarrow \text{cost}_{\text{zigzig}} \leq 3(r'(x) - r(x))$$
The last inequality holds because \(\log \) is a concave function.

\[
\frac{1}{2} (r(x) + r'(g) - 2r'(x)) \\
= \frac{1}{2} \left(\log(s(x)) + \log(s'(g)) - 2 \log(s'(x)) \right) \\
= \frac{1}{2} \log \left(\frac{s(x)}{s'(x)} \right) + \frac{1}{2} \log \left(\frac{s'(g)}{s'(x)} \right) \\
\leq \log \left(\frac{1}{2} \frac{s(x)}{s'(x)} + \frac{1}{2} \frac{s'(g)}{s'(x)} \right) \\
= \log \left(\frac{1}{2} \right) = -1
\]

Amortized cost of the whole splay operation:

\[
\leq 1 + 1 + \sum_{\text{steps } t} 3(r_t(x) - r_{t-1}(x)) \\
= 2 + r(\text{root}) - r_0(x) \\
\leq O(\log n)
\]

The first one is added due to the fact that so far for each step of a splay-operation we have only counted the number of rotations, but the cost is 1+ rotations.

The second one comes from the zig-operation. Note that we have at most one zig-operation during a splay.
Splay Trees

Bibliography

????????????????????????????????????