7.5 \((a, b)\)-trees

Definition 1
For \(b \geq 2a - 1\) an \((a, b)\)-tree is a search tree with the following properties:
1. all leaves have the same distance to the root
2. every internal non-root vertex \(v\) has at least \(a\) and at most \(b\) children
3. the root has degree at least 2 if the tree is non-empty
4. the internal vertices do not contain data, but only keys (external search tree)
5. there is a special dummy leaf node with key-value \(\infty\)

Each internal node \(v\) with \(d(v)\) children stores \(d-1\) keys \(k_1, \ldots, k_{d-1}\). The \(i\)-th subtree of \(v\) fulfills
\[
k_{i-1} < \text{key in } i\text{-th sub-tree} \leq k_i,
\]
where we use \(k_0 = -\infty\) and \(k_d = \infty\).

Example 2

\[
\begin{array}{c}
10 & 19 \\
1 & 3 & 5 \\
14 & 28 \\
1 & 3 & 5 & 14 & 19 & 28 & \infty
\end{array}
\]

Variants
- The dummy leaf element may not exist; it only makes implementation more convenient.
- Variants in which \(b = 2a\) are commonly referred to as \(B\)-trees.
- A \(B\)-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A \(B^+\) tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A \(B^*\) tree requires that a node is at least \(2/3\)-full as opposed to \(1/2\)-full (the requirement of a \(B\)-tree).
Lemma 3
Let T be an (a,b)-tree for $n > 0$ elements (i.e., $n + 1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2a^{h-1} \leq n + 1 \leq b^h$
2. $\log_b(n + 1) \leq h \leq 1 + \log_a(n + 1)$

Proof.
- If $n > 0$ the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2a^{h-1}$.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h.

Search

Search(8)

The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $O(b \cdot h) = O(b \cdot \log n)$, if the individual nodes are organized as linear lists.

Insert

Insert element x:
- Follow the path as if searching for $key[x]$.
- If this search ends in leaf ℓ, insert x before this leaf.
- For this add $key[x]$ to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do $\text{Rebalance}(v)$.
Insert

Rebalance(v):

- Let $k_i, i = 1, \ldots, b$ denote the keys stored in v.
- Let $j := \lceil \frac{b+1}{2} \rceil$ be the middle element.
- Create two nodes v_1 and v_2. v_1 gets all keys k_1, \ldots, k_{j-1} and v_2 gets keys k_j, \ldots, k_b.
- Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \geq a$ since $b \geq 2a - 1$.
- They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \leq b$ (since $b \geq 2$).
- The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v_1, and a new pointer (to the right of k_j) in the parent is added to point to v_2.
- Then, re-balance the parent.
Insert

Insert(7)

```
  6
 / \
3 10 19
 /  |
1  7 8 14 28
 / |  |
12 5 6 10 15 28
```

Delete

Delete element \(x\) (pointer to leaf vertex):

- Let \(v\) denote the parent of \(x\). If \(\text{key}[x]\) is contained in \(v\), remove the key from \(v\), and delete the leaf vertex.
- Otherwise delete the key of the predecessor of \(x\) from \(v\); delete the leaf vertex; and replace the occurrence of \(\text{key}[x]\) in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- If now the number of keys in \(v\) is below \(a - 1\) perform Rebalance' \((v)\).

Rebalance' \((v)\):

- If there is a neighbour of \(v\) that has at least \(a\) keys take over the largest (if right neighbour) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge \(v\) with one of its neighbours.
- The merged node contains at most \((a - 2) + (a - 1) + 1\) keys, and has therefore at most \(2a - 1 \leq b\) successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Animation for deleting in an \((a, b)\)-tree is only available in the lecture version of the slides.
There is a close relation between red-black trees and (2, 4)-trees:

First make it into an internal search tree by moving the satellite-data from the leaves to internal nodes. Add dummy leaves.

Then, color one key in each internal node \(v \) black. If \(v \) contains 3 keys you need to select the middle key otherwise choose a black key arbitrarily. The other keys are colored red.

Note that this correspondence is not unique. In particular, there are different red-black trees that correspond to the same (2, 4)-tree.
A description of B-trees (a specific variant of (a,b)-trees) can be found in Chapter 18 of [CLRS90]. Chapter 7.2 of [MS08] discusses (a,b)-trees as discussed in the lecture.