7.5 \((a, b)\)-trees

Definition 1

For \(b \geq 2a - 1\) an \((a, b)\)-tree is a search tree with the following properties

1. all leaves have the same distance to the root
2. every internal non-root vertex \(v\) has at least \(a\) and at most \(b\) children
3. the root has degree at least 2 if the tree is non-empty
4. the internal vertices do not contain data, but only keys (external search tree)
5. there is a special dummy leaf node with key-value \(\infty\)
Each internal node v with $d(v)$ children stores $d - 1$ keys k_1, \ldots, k_{d-1}. The i-th subtree of v fulfills

$$k_{i-1} < \text{key in } i\text{-th sub-tree} \leq k_i,$$

where we use $k_0 = -\infty$ and $k_d = \infty$.

Example 2

7.5 \((a, b)\)-trees
7.5 \((a, b)\)-trees

Variants

- The dummy leaf element may not exist; it only makes implementation more convenient.
- Variants in which \(b = 2a\) are commonly referred to as \(B\)-trees.
- A \(B\)-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A \(B^+\) tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A \(B^*\) tree requires that a node is at least \(2/3\)-full as opposed to \(1/2\)-full (the requirement of a \(B\)-tree).
Lemma 3
Let T be an (a, b)-tree for $n > 0$ elements (i.e., $n + 1$ leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2a^{h-1} \leq n + 1 \leq b^h$
2. $\log_b(n + 1) \leq h \leq 1 + \log_a\left(\frac{n+1}{2}\right)$

Proof.

▷ If $n > 0$ the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least $2a^{h-1}$.

▷ Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h.

\[\square\]
The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $\mathcal{O}(b \cdot h) = \mathcal{O}(b \cdot \log n)$, if the individual nodes are organized as linear lists.
Search

Search(19)

The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $O(b \cdot h) = O(b \cdot \log n)$, if the individual nodes are organized as linear lists.
Insert element x:

- Follow the path as if searching for $\text{key}[x]$.
- If this search ends in leaf ℓ, insert x before this leaf.
- For this add $\text{key}[x]$ to the key-list of the last internal node v on the path.
- If after the insert v contains b nodes, do Rebalance(v).
Insert

Rebalance(\nu):

- Let \(k_i, i = 1, \ldots, b \) denote the keys stored in \(\nu \).
- Let \(j := \lfloor \frac{b+1}{2} \rfloor \) be the middle element.
- Create two nodes \(\nu_1 \) and \(\nu_2 \). \(\nu_1 \) gets all keys \(k_1, \ldots, k_{j-1} \) and \(\nu_2 \) gets keys \(k_{j+1}, \ldots, k_b \).
- Both nodes get at least \(\lfloor \frac{b-1}{2} \rfloor \) keys, and have therefore degree at least \(\lfloor \frac{b-1}{2} \rfloor + 1 \geq a \) since \(b \geq 2a - 1 \).
- They get at most \(\lceil \frac{b-1}{2} \rceil \) keys, and have therefore degree at most \(\lceil \frac{b-1}{2} \rceil + 1 \leq b \) (since \(b \geq 2 \)).
- The key \(k_j \) is promoted to the parent of \(\nu \). The current pointer to \(\nu \) is altered to point to \(\nu_1 \), and a new pointer (to the right of \(k_j \)) in the parent is added to point to \(\nu_2 \).
- Then, re-balance the parent.
Insert

Insert(7)
Insert

Insert(7)

7.5 \((a, b)\)-trees
Insert

Insert(7)
Insert

Insert(7)

7.5 \((a, b)\)-trees
Delete element x (pointer to leaf vertex):

- Let v denote the parent of x. If $\text{key}[x]$ is contained in v, remove the key from v, and delete the leaf vertex.

- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of $\text{key}[x]$ in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).

- If now the number of keys in v is below $a - 1$ perform Rebalance$'(v)$.
Rebalance' \((v)\):

- If there is a neighbour of \(v\) that has at least \(a\) keys take over the largest (if right neighbour) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge \(v\) with one of its neighbours.
- The merged node contains at most \((a - 2) + (a - 1) + 1\) keys, and has therefore at most \(2a - 1 \leq b\) successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.
Delete

Animation for deleting in an (a,b)-tree is only available in the lecture version of the slides.
(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2, 4)-trees:

First make it into an internal search tree by moving the satellite-data from the leaves to internal nodes. Add dummy leaves.
(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2, 4)-trees:

Then, color one key in each internal node \(v \) black. If \(v \) contains 3 keys you need to select the middle key otherwise choose a black key arbitrarily. The other keys are colored red.
There is a close relation between red-black trees and (2, 4)-trees: Re-attach the pointers to individual keys. A pointer that is between two keys is attached as a child of the red key. The incoming pointer points to the black key.
(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2, 4)-trees:

Note that this correspondence is not unique. In particular, there are different red-black trees that correspond to the same (2, 4)-tree.
A description of B-trees (a specific variant of \((a, b)\)-trees) can be found in Chapter 18 of [CLRS90]. Chapter 7.2 of [MS08] discusses \((a, b)\)-trees as discussed in the lecture.