
Winter Semester 2017/18

Online and Approximation

Algorithms

http://www14.in.tum.de/lehre/2017WS/oa/index.html.en

Susanne Albers

Department of Informatics

TU München

Lectures: 4 SWS
Mon 08:00–10:00, MI 00.13.009A
Wed 08:00–10:00, MI 00.13.009A

Exercises: 2 SWS
Wed 10:00–12:00, 00.08.036

Teaching assistant: Jens Quedenfeld
(jens.quedenfeld@in.tum.de)

Bonus: If at least 50% of the maximum number of
points of the homework assignments are attained
and student presents the solutions of at least two
problems in the exercise sessions, then the grade of
the final exam will be improved by 0.3 (or 0.4).

2WS 2017/18

0. Organizational matters

Valuation: 8 ECTS (4 + 2 SWS)

Office hours: by appointment (albers@in.tum.de)

3WS 2017/18

0. Organizational matters

Problem sets: Made available on Monday by 10:00
on the course webpage.
Must be turned in one week later before the lecture.

Exam: Written exam; no auxiliary means are permitted, except
for one hand-written sheet of paper.

Prerequisites: Grundlagen: Algorithmen und Datenstrukturen (GAD)
Diskrete Wahrscheinlichkeitstheorie (DWT)

Effiziente Algorithmen und Datenstrukturen
(advantageous but not required)

4WS 2017/18

0. Organizational matters

 [BY] A. Borodin und R. El-Yaniv. Online Computation and

Competitive Analysis. Cambridge University Press, Cambridge,

1998. ISBN 0-521-56392-5

 [V] V.V. Vazirani. Approximation Algorithms. Springer Verlag, Berlin,

2001. ISBN 3-540-65367-8

5WS 2017/18

0. Literature

Online and approximation algorithms

Optimization problems for which the computation of an

optimal solution is hard or impossible.

Have to resort to approximations:

Design algorithms with a provably good performance.

6WS 2017/18

0. Content

Online algorithms

• Scheduling

• Paging

• List update

• Randomization

• Data compression

• Robotics

• Matching

7WS 2017/18

0. Content

Approximation algorithms

• Traveling Saleman Problem

• Knapsack Problem

• Scheduling (makespan minimization)

• SAT (Satisfiability)

• Set Cover

• Hitting Set

• Shortest Superstring

8WS 2017/18

0. Content

Online and approximation algorithms

Optimization problems for which the computation of an

optimal solution is hard or impossible.

Have to resort to approximations:

Design algorithms with a provably good performance.

9WS 2017/18

1. Introduction

Relevant input arrives incrementally over time. Online algorithm has to

make decisions without knowledge of any future input.

1. Ski rental problem: Student wishes to pick up the sport of skiing.

Renting equipment: 10$ per season

Buying equipment: 100$

Do not know how long (how many seasons) the student will

enjoy skiing.

2. Currency conversion: Wish to convert 1000$ into Yen over a certain

time horizon.

10WS 2017/18

1.1 Online problems

3. Paging/caching: Two-level memory system

11WS 2017/18

1.1 Online problems

GC ED B

F

A

IH GC B E OA L large slow memory

small fast memory

Request: Access to page in memory system

Page fault: requested page not in fast memory; must be loaded into

fast memory

Goal: Minimize the number of page faults

σ = A C B E D A F …

D

4. Data structures: List update problem

Unsorted linear list

12WS 2017/18

1.1 Online problems

Request: Access to item in the list

Cost: Accessing the i-th item in the list incurs a cost of i.

Goal: Minimize cost paid in serving σ.

σ = A A C B E D A …

B C E A DL:

Rearrangements: After an access, requested item may be moved at

no extra cost to any position closer to the front of the list

(free exchanges). At any time two adjacent items may be

exchanged at a cost of 1 (paid exchange).

5. Robotics: Navigation

13WS 2017/18

1.1 Online problems

Unknown scene: Robot has to find a short path from s to t.

s
t

6. Scheduling: Makespan minimization

14WS 2017/18

1.1 Online problems

m identical parallel machines

Input portion: Job Ji with individual processing time pi

Goal: Minimize the completion time of the last job in the schedule.

1

m

time

Assuming P ≠ NP, NP-hard optimization problems cannot be solved

optimally in polynomial time.

1. Scheduling: Makespan minimization (see above)

Entire job sequence is known in advance. Famous optimization

problem studied by Ronald Graham in 1966.

2. Traveling Salesman Problem: n cities, c(i,j) = cost/distance to travel

from city i to city j, 1≤ i,j ≤ n.

Goal: Find tour that visits each city exactly once and minimizes

the total cost.

15WS 2017/18

1.2 NP-hard optimization problems

16WS 2017/18

1.2 NP-hard optimization problems

5. Shortest Superstring: Finite alphabet Σ, n strings {s1,…, sn} Σ+.

Goal: Find shortest string that contains all si as substring.

1.2 NP-hard optimization problems

17WS 2017/18

Formal model:

Each request σ(t) has to be served without knowledge of any future

requests.

Goal: Optimize a desired objective, typically the total cost incurred in

serving σ.

18WS 2017/18

2. Online algorithms

σ = σ(1) σ(2) σ(3) …. σ(t) σ(t+1) …

A Online algorithm

has to serve σ.

Online algorithm A is compared to an optimal offline algorithm OPT that

knows the entire input σ in advance and can serve it optimally,

with minimum cost.

A OPT

Cost: A(σ) OPT(σ)

Online algorithm A is called c-competitive if there exists a constant a,

which is independent of σ, such that

A(σ) ≤ c ∙ OPT(σ) + a

holds for all σ.

19WS 2017/18

2. Competitive analysis

Makespan minimization: m identical parallel machines.

n jobs J1,…, Jn . pt = processing time of Jt , 1 ≤ t ≤ n

Goal: Minimize the makespan

Algorithm Greedy: Schedule each job on the machine currently having

the smallest load.

Algorithm is also referred to as List Scheduling.

Theorem: Greedy is (2-1/m)-competitive.

Theorem: The competitive ratio of Greedy is not smaller than 2-1/m.

20
WS 2017/18

2.1 Scheduling

Theorem: Greedy is (2-1/m)-competitive.

Proof: Given an arbitrary job sequence σ = J1,…,Jn, consider the

schedule constructed by Greedy.

TGreedy: makespan Greedy

TOPT : makespan OPT

Let Jl be the job that finishes last. At the time of assignment Jl was

placed on a least loaded machine. This implies that the idle time on any

machine is upper bounded by pl.

21
WS 2017/18

2.1 Scheduling

1

m pl

Jl TGreedy

ini

ni

il

ni

iGreedy pmppmpmT

 1

11

max)1()1(

It follows

The last inequality holds because of the following facts.

 : Even if OPT can distribute all jobs evenly among

the machines, its makespan cannot be smaller that

the average machine load.

 : The largest job must be placed (as a whole) on

one of the machines.

22
WS 2017/18

2.1 Scheduling

OPT

ni

i Tpm
1

/1

OPTini Tp 1max

.
1

2max
1

1
1

1

1

OPTini

ni

iGreedy T
m

p
m

p
m

T

Theorem: The competitive ratio of Greedy is not smaller than 2-1/m.

Proof: Consider the following job sequence.

σ = m(m-1) jobs of processing time 1, followed by one job of

processing time m

TGreedy = m-1+ m = 2m-1

TOPT = m

23
WS 2017/18

2.1 Scheduling

Greedy OPT

Two-level memory system

24WS 2017/18

2.2 Paging

GC ED B

F

A

IH GC B E OA L large slow memory

small fast memory

Request: Access to page in memory system

Page fault: requested page not in fast memory; must be loaded into

fast memory

Goal: Minimize the number of page faults

σ = A C B E D A F …

D

Popular online algorithms

 LRU (Least Recently Used): On a page fault evict the page from fast

memory that has been requested least recently.

 FIFO (First-In First-Out): Evict the page that has been in fast

memory longest.

Let k be the number of pages that can simultaneously reside in fast

memory.

Theorem: LRU and FIFO are k-competitive.

Theorem: Let A be a deterministic online paging algorithm. If A is

c-competitive, then c ≥ k.

25WS 2017/18

2.2 Paging

Theorem: LRU is k-competitive.

Proof: W.l.o.g. LRU and OPT start with the same configuration in fast

memory.

Let σ = σ(1),…,σ(m) be an arbitrary request sequence.

We will show LRU(σ) ≤ k · OPT(σ).

Partition σ into phases P(1), P(2), P(3), … such that LRU generates

 at most k page faults in P(1)

 exactly k page faults in each P(r), r ≥ 2.

Such a partitioning can be obtained by traversing σ backwards.

Whenever k faults by LRU have been encountered, a phase is cut off.

We will show that in each phase OPT has at least one page fault. This

establishes LRU(σ) ≤ k · OPT(σ).

26WS 2017/18

2.2 Paging

First consider P(1). The first page fault by LRU is also a fault for OPT

because both algorithms start with the same set of pages in fast

memory.

In the remainder we concentrate of any P(r), where r ≥ 2.

Let p1,…, pk denote the k pages/requests where LRU has a fault.

Let q be the page referenced last in the preceding phase P(r-1).

P(r) : q | p1 … p2 … pk |

Case 1: pi ≠ pj, for all i ≠ j, and pi ≠ q, for all i

At the end of P(r-1) page q is in OPT‘s fast memory. At that time the k

distinct pages p1,…, pk, which are different from q, cannot all reside in

OPT’s fast memory so that OPT must incur at least one fault in P(r).

27WS 2017/18

2.2 Paging

Case 2: pi = pj, for a pair i, j with i ≠ j

P(r) : q | … pi … pl … pi … |

LRU faults twice on pi during P(r). Hence page pi must be evicted from

LRU‘s fast memory on a request to some page pl. At that time pi is the

least recently requested page in fast memory. Thus, since the last

reference to pi exactly k-1 distinct pages were requested. These pages

are different from pi and pl. We conclude that P(r) contains requests to

k+1 distinct pages so that OPT must incur at least one fault.

28WS 2017/18

2.2 Paging

pi is evicted

Case 3: pi ≠ pj, for all i ≠ j, but pi = q, for some i

P(r) : q | … pl … q … |

LRU incurs a fault on q during P(r). Hence q must be evicted from

LRU‘s fast memory on a request to some page pl. At that time q is the

least recently requested page in fast memory. Hence, since the

beginning of the phase exactly k-1 distinct pages different from q and pl

were requested. Therefore P(r) contains requests to k+1 distinct pages,

and OPT must incur at least one fault.

29WS 2017/18

2.2 Paging

q is evicted

Theorem: Let A be a deterministic online paging algorithm. If A is

c-competitive, then c ≥ k.

Proof: Let S={p1,…,pk+1} be a set of k+1 pages.

At any time exactly one page does not reside in fast memory.

Adversary: Always requests the page not available in A‘s fast memory.

A(σ) = m m = length of σ

OPT can serve σ so that it incurs at most one fault on any k

consecutive requests: Whenever OPT has a fault on a reference

σ(t)=p*, all pages of S\{p*} are in fast memory. OPT can evict a page

not needed during the next k-1 references.

30WS 2017/18

2.2 Paging

Marking algorithms: Serve a request sequence in phases. First phase

starts with the first request. Any other phase starts with the first

request following the end of the previous phase.

At the beginning of a phase all pages are unmarked. Whenever

a page is requested, it is marked. On a fault evict an arbitrary

unmarked page in fast memory. If no such page is available,

the phase ends and all marks are erased.

Flush-When-Full: If there is a page fault and there is no empty slot in

fast memory, evict all pages.

31WS 2017/18

2.2 Paging

Offline algorithm

 MIN: On a page fault evict the page whose next request is farthest in

the future.

Theorem: MIN is an optimal offline algorithm for the paging problem,

i.e. it achieves the smallest number of page faults/page

replacements.

32WS 2017/18

2.2 Paging

An algorithm is a demand paging algorithm if it only replaces a page in

fast memory when there is a page fault.

Fact: Any paging algorithm can be turned into a demand paging

algorithm such that, for any request sequence, the number of

memory replacements does not increase.

33WS 2017/18

2.2 Paging

Theorem: MIN is an optimal offline algorithm for the paging problem,

i.e. it achieves the smallest number of page faults/page

replacements.

Proof: Let σ be an arbitrary request sequence of length m.

Let A be an algorithm that serves σ with the minimum number of

faults/page replacements. W.l.o.g. A is a demand paging algorithm.

Claim: Suppose that A and MIN serve the first i-1 requests identically

but the i-th request differently, 1 ≤ i ≤ m. We can transform A into an

algorithm A’ such that

 A’, MIN serve the first i requests identically

 A’(σ) ≤ A(σ) and A’ is again a demand paging algorithm.

34WS 2017/18

2.2 Paging

Theorem follows by repeatedly applying the claim. Specifically, let Ai be

the algorithm obtained from A after i steps of the transformation, i.e. Ai

and MIN serve the first i requests identically. The claim ensures

A(σ) ≥ A1(σ) ≥ A2(σ) ≥ … ≥ Am(σ) = MIN(σ).

It remains to prove the claim. Consider the i-th request. Since A and

MIN are demand paging algorithms, there is a fault on the i-th request.

Let x be the referenced page.

Suppose that A evicts u while MIN evicts v.

Definition of A’: It serves the first i-1 requests as A and MIN. On the i-th

request it evicts v. Then A’ simulates A until one of the following two

events occurs.

35WS 2017/18

2.2 Paging

u v

x

A

x

vu

A’

1. A evicts v on a fault to page y. In this event A’ evicts u.

2. Page u is requested an A evicts z. In this case A’ loads v.

In each of the two events, the fast memories of A and A’ are identical.

Thereafter, A’ works the same way as A.

By the MIN policy, Event 2 occurs before v is requested.

A’ performs the same number of memory replacements as A. Finally, A’

can be transformed into a demand paging algorithm without increasing

the number of memory replacements (see Exercises).
36WS 2017/18

2.2 Paging

u v

x

A

x

vu

A’

y y

A A’

u z

u

vu

x

z

v x

v

General concept to analyze the cost of a sequence of operations

executed, for instance, on a data structure.

Wish to show: An individual operation can be expensive, but the

average cost of an operation is small.

Amortization: Distribute cost of a sequence of operations properly

among the operations.

Example: Binary counter with increment operation. Cost of an operation

is equal to the number of bit flips.

37WS 2017/18

2.3 Amortized analysis

38WS 2017/18

2.3 Amortized analysis, binary counter

.
Operation Counter value Cost

00000

1 00001 1

2 00010 2

3 00011 1

4 00100 3

5 00101 1

6 00110 2

7 00111

8 01000

9 01001

10 01010

11 01011

12 01100

13 01101

39WS 2017/18

2.3 Amortized analysis

40WS 2017/18

2.3 Amortized competitive analysis

Summing the last inequality over all t, for a request sequence σ of

length m, we obtain

Σ1≤t≤m (A(t) + Ф(t) - Ф(t-1)) ≤ c ·Σ1≤t≤m OPT(t),

which is equivalent to

A(σ) + Ф(m) - Ф(0) ≤ c · OPT(σ)

and

A(σ) ≤ c · OPT(σ) - Ф(m) + Ф(0).

If the potential is non-negative and initially zero, we obtain as desired

A(σ) ≤ c · OPT(σ).

41WS 2017/18

2.3 Amortized competitive analysis

42WS 2017/18

2.4 List update problem

Request: Access to item in the list

Cost: Accessing the i-th item in the list incurs a cost of i.

Goal: Minimize cost paid in serving σ.

σ = A A C B E D A …

B C E A DL:

Rearrangements: After an access, requested item may be moved at

no extra cost to any position closer to the front of the list

(free exchanges). At any time two adjacent items may be

exchanged at a cost of 1 (paid exchange).

Unsorted, linear linked list of items

Online algorithms

 Move-To-Front (MTF): Move requested item to the front of the list.

 Transpose: Exchange requested item with immediate predecessor

in the list.

 Frequency Count: Store a frequency counter for each item in the

list. Whenever an item is requested, increase its counter by

one. Always maintain the items of the list in order of non-

increasing counter values.

Theorem: MTF is 2-competitive.

Theorem: Transpose and Frequency Count are not c-competitive, for

any constant c.

Theorem: Let A be a deterministic list update algorithm. If A is

c-competitive, for all list lengths, then c ≥ 2.

43WS 2017/18

2.4 List update problem

Theorem: MTF is 2-competitive.

Proof: Ф = # inversions

inversion: ordered pair (x,y) of items such that

x before y in OPT‘s list

x behind y in MTF‘s list

Ф ≥ 0 Ф(0) = 0 if initial lists of OPT and MTF are identical

Consider an arbitrary request sequence σ = σ(1),…,σ(m).

Let σ(t) be an arbitrary request, and let x denote the requested item.

We will analyze MTF‘s amortized cost on σ(t) and prove

MTF(σ(t))+ Ф(t)-Ф(t-1) ≤ 2 OPT(σ(t)).

44WS 2017/18

2.4 List update problem

1. Analysis of OPT‘s moves

Assume that in OPT‘s list, item x is stored at position k+1. The cost

incurred in accessing the item is k+1.

Suppose that after the access, OPT inserts x behind the i-th item in the

list, where i≤k. For each item y that is passed, an inversion (x,y) can be

created. Since k-i items are being passed, the potential can increase by

at most k-i during these item swaps.

Finally, OPT may perform a number of, say, p(t) paid exchanges during

the service of σ(t). Again, for each item swap, an inversion can be

created such that the potential may increase by at most p(t).

Actual cost of OPT on σ(t) = k+1+p(t)

Ф due to OPT‘s moves ≤ k-i+p(t)

45WS 2017/18

2.4 List update problem

x

ki

2. Analyis of MTF‘s moves

Assume that in MTF‘s list, item x is stored at position l+1. The cost

incurred in accessing the item is l+1.

Case 1: l ≥ i

Since l ≥ i there must exist at least l-i items yj that are stored before x in

MTF‘s list but behind x in OPT‘s list. Hence there exist at least l-i

inversions of the form (x,yj). When MTF moves x to the front of the list,

each of these inversions is destroyed (potential drop by at least l-i). At

the same time, for each of the first i items in OPT‘s list, an inversion can

be created (potential increase by at most i).

Actual cost of MTF on σ(t) = l+1

Ф due to MTF‘s moves ≤ -(l-i)+i

MTF(σ(t))+Ф ≤ l+1+(k-i)+p(t)-(l-i)+i=k+i+1+p(t)≤ 2(k+1+p(t))=2∙OPT(σ(t))

46WS 2017/18

2.4 List update problem

l

x

i

2. Analyis of MTF‘s moves

Case 2: l < i

When MTF moves x to the front of the list, for each of the l items being

passed, an inversion can be created (potential increase by at most l).

Actual cost of MTF on σ(t) = l+1

Ф due to MTF‘s moves ≤ l

MTF(σ(t))+Ф ≤ l+1+(k-i)+p(t)+l ≤ l+1+k+p(t)≤ 2(k+1+p(t))=2∙OPT(σ(t))

The second inequality holds because l<i; the third one holds since l<i≤k.

47WS 2017/18

2.4 List update problem

l

x

i

Theorem: Let A be a deterministic list update algorithm. If A is

c-competitive, for all list lengths, then c ≥ 2.

Proof: Let n be the number of items in the list.

Adversary: Always requests last item in A‘s list.

A(σ) = m · n m = length of the constructed σ

Let m be an integer multiple of n.

OPT: In order to serve σ, OPT maintains a static list of the items, sorted

in order of non-increasing request frequencies. At most 𝑛
2

paid

exchanges are needed to bring the initial list into this fixed static

ordering. Let mi denote the number of requests to the i-th item in the

list. There holds m1 ≥ m2 ≥ … ≥ mn.

OPT(σ) ≤ STAT(σ) ≤ Σ1≤i≤n i·mi + 𝑛
2

≤ Σ1≤i≤n i·(m/n) + 𝑛
2

48WS 2017/18

2.4 List update problem

In order to verify the last inequality, observe that one can balance the

request frequencies without decreasing the cost: While there exists an

mi > m/n and an mj < m/n, where i < j, we can decrease mi by 1 and

increase mj by 1. This strictly increases the service cost. Thus

OPT(σ) ≤ Σ1≤i≤n i·(m/n) + 𝑛
2

= (n+1)m/2 + n(n-1)/2.

The cost ratio c = A(σ) / OPT(σ) satisfies

and the latter ratio tends to 2n/(n+1) = 2-2/(n+1) as m goes to infinity.

49WS 2017/18

2.4 List update problem

mnnn

n

nnnm

mn
c

/)1(1

2

2/)1(2/)1(

Theorem: Transpose and Frequency Count are not c-competitive, for

any constant c.

Proof: Transpose:

Always request the last item in Transpose‘s list. Only two items are

referenced in turn. Let m be the length of the generated request

sequence σ and assume that m is even.

Transpose(σ) = mn n = list length

OPT will move the two items ever referenced to the front of the list

when they are first requested. They remain a positions 1 and 2,

respectively.

OPT(σ) ≤ 2n + 1·(m-2)/2 + 2·(m-2)/2 = 2n + (m-2)·3/2

The cost ratio tends to 2n/3 as m goes to infinity.

50WS 2017/18

2.4 List update problem

Frequency Count (FC):

Let x1,x2,…,xn be the order of the items in FC’s initial list. Let k>n.

σ consists of k+1-i requests to xi, for i=1,…,n.

OPT can serve σ using the MTF algorithm. In this case the first

request to an item xi costs at most n, while the remaining requests to

xi can be served at a cost of 1 each.

Hence MTF(σ) ≤ Σ1≤i≤n (n+k-i) =n(n+k) – n(n+1)/2. We obtain

and the latter ratio tends to (n+1)/2 as k tends to infinity.

51WS 2017/18

2.4 List update problem

3

)1(

2

)1(

3

)1)(1(

2

)1(

6

)12)(1(

2

)1(

2

)1(
)1()(

2

1

nnnknnnnnkn

nnnnnnkn
ikiFC

n

i

2/)1()(

3/)1(2/)1(

)(

)(2

nkn

nnk

OPT

FC

A = randomized online algorithm

A(σ) random variable, for any σ

Competitive ratio of A defined w.r.t. an adversary ADV who

 generates σ

 also serves σ

ADV knows the description of A

Critical question: Does ADV know the outcome of the random choices

made by A?

52WS 2017/18

2.5 Randomized online algorithms

Oblivious adversary:

Does not know the outcome of the random choices made by A.

Generates the entire σ in advance.

53WS 2017/18

2.5 Randomized online algorithms

σ = σ(1) σ(2) σ(3) …. σ(m)

A

ADV

Adaptive adversary:

Does know the outcome of the random choices made by A on the first

t-1 requests when generating σ(t).

Adaptive online adversary: Serves σ online.

Adaptive offline adversary: Serves σ offline.

54WS 2017/18

2.5 Randomized online algorithms

σ = σ(1) σ(2) σ(3) …. σ(t-1)

A

ADV

σ(t)

Oblivious adversary: Does not know the outcome of A‘s random

choices; serves σ offline. A is c-competitive against oblivious

adversaries, if there exists a constant a such that

E[A(σ)] ≤ c ∙ ADV(σ) + a

holds for all σ generated by oblivious adversaries.

Constant a must be independent of input σ.

Adaptive online adversary: Knows the outcome of A‘s random

choices on first t-1 requests when generating σ(t); serves σ

online. A is c-competitive against adaptive online adversaries, if

there exists a constant a such that

E[A(σ)] ≤ c ∙ E[ADV(σ)] + a

holds for all σ generated by adaptive online adversaries.

Constant a must be independent of input σ.

55WS 2017/18

2.5 Three types of adversaries

Adaptive offline adversary: Knows the outcome of A‘s random

choices on first t-1 requests when generating σ(t); serves σ

offline. A is c-competitive against adaptive offline adversaries, if

there exists a constant a such that

E[A(σ)] ≤ c ∙ E[OPT(σ)] + a

holds for all σ generated by adaptive offline adversaries.

Constant a must independent of input σ.

56WS 2017/18

2.5 Three types of adversaries

Theorem: If there exists a randomized online algorithm that is

c-competitive against adaptive offline adversaries, then there

also exists a c-competitive deterministic online algorithm.

Theorem: If A is c-competitive against adaptive online adversaries and

there exists a d-competitive algorithm against oblivious

adversaries, then there exists a cd-competitive algorithm

against adpative offline adversaries.

Corollary: If A is c-competitive against adaptive online adversaries,

then there exists a c2-competitive deterministic algorithm.

57WS 2017/18

2.5 Relating the adversaries

58WS 2017/18

2.6 Randomized paging

There holds ln(k+1) ≤ Hk ≤ ln k + 1

A

Theorem: RMARK is 2Hk-competitive against oblivious adversaries.

Proof: Consider an arbitrary request sequence σ and assume that the

initial fast memory is empty.

Suppose that RMARK generates phases P(1),…,P(l).

For each P(i) the following two properties hold.

 The phase contains requests to k distinct pages.

 The first page in P(i) generates a fault and hence is different from all

pages in P(i-1) if i ≥ 2.

A page is called new with respect to P(i), where i ≥ 2, if it is referenced

in P(i) but not in P(i-1). In P(1) every page is new.

ni= # new pages in P(i)

59WS 2017/18

2.6 Randomized paging

In the following the term cost refers to #page faults incurred.

We will show that in each P(i)

 amortized cost OPT ≥ ni/2

 expected cost RMARK ≤ niHk

Analysis OPT

Consider the subsequence consisting of P(i-1) and P(i), i ≥ 2. Exactly

k+ni distinct pages are referenced so that OPT must incur at least ni

faults when serving the subsequence. In P(1) at least n1 faults are

incurred.

60WS 2017/18

2.6 Randomized paging

P(i-1) P(i)

k distinct pages ni new pages shown in red

By combining pairs of (a) odd and even numbered phases and (b) even

and odd numbered phases, we obtain:

(a) OPT(σ) ≥ n2 + n4 + n6 + …

(b) OPT(σ) ≥ n1 + n3 + n5 + …

Summing (a) and (b) and dividing by 2, we get OPT(σ) ≥ Σ1≤i≤l ni/2 so

that a cost of ni/2 can be charged to P(i).

Cost RMARK

Fix any P(i). RMARK incurs a cost of ni for serving requests to new

pages.

During the service of P(i) a page is called old if it is unmarked but was

requested in P(i-1). Note: When an old page is referenced, it ceases to

be old.

61WS 2017/18

2.6 Randomized paging

oi = # requests to old pages in P(i)

Analyze expected cost of j-th request to an old page, 1≤ j ≤ oi.

ni(j) = # new pages requested before j-th request to an old page

Immediately before the j-th request to an old page, there exist k-(j-1)

old pages, ni(j) of which do not reside in fast memory. The probability of

absence is the same for all the old pages. This holds true because

RMARK evicts unmarked pages uniformly at random.

Hence the expected cost of the j-th request to an old page is

𝑛𝑖(𝑗)

𝑘−(𝑗−1)
≤

𝑛𝑖

𝑘−(𝑗−1)
.

62WS 2017/18

2.6 Randomized paging

ni(j) j-1 pages

that were old

old pagesold pages

slow memory (portion)fast memory

There holds oi < k and ni + oi = k.

Hence the expected cost for serving requests to old pages is

σ𝑗=1
𝑜𝑖 𝑛𝑖

𝑘−(𝑗−1)
≤ 𝑛𝑖(1/𝑘 + … + 1/2) = 𝑛𝑖 H𝑘 − 1 .

RMARK’s total expected cost in P(i) is at most ni + ni(Hk-1) = niHk.

63WS 2017/18

2.6 Randomized paging

Theorem: Let A be a randomized online paging algorithm. If A is c-

competitive against oblivious adversaries, then c ≥ Hk.

Proof: S={p1,…,pk+1} set of k+1 pages

ADV: oblivious adversary

At any time while constructing a request sequence σ, ADV maintains a

probability vector Q=(q1,…,qk+1).

qi = probability that pi is not in A‘s fast memory

There holds Σ1≤i≤k+1 qi = 1 because at any time exactly one page does

not reside in fast memory.

Initially, p1,…,pk are in fast memory; an arbitrary one gets labeled.

ADV constructs σ in phases.

64WS 2017/18

2.6 Randomized paging

Each phase consists of k subphases.

Construction of subphase j, 1≤ j ≤k.

Invariant: At the beginning of the subphase there are j labeled pages

and u=k+1-j unlabeled pages. The labels guide ADV which pages to

request. ADV will enforce an expected cost of at least 1/u = 1/(k+1-j) to

algorithm A. Moreover, one additional page will get labeled.

At the end of the k-th subphase, the last page that got labeled remains

labeled. This maintains the invariant for the first subphase of the

following phase.

Over all the k subphases ADV enforces an expected cost of

Σ1≤i≤k1/(k+1-j) = Hk.

65WS 2017/18

2.6 Randomized paging

At any time let L = {indices of labeled pages} and λ = Σi∈L qi.

Request generation in subphase j.

1. λ = 0 at the beginning of the subphase: There exists an unlabeled

page pi with qi ≥ 1/u. ADV requests pi and labels it. Subphase ends.

2. λ > 0 at the beginning of the subphase: There exists a labeled page

pi with qi = ε > 0.

ADV requests pi.

while λ > ε and A’s expected cost in subphase is < 1/u do

ADV requests labeled page with largest q-value

endwhile

ADV requests unlabeled page with highest q-value and labels it.

66WS 2017/18

2.6 Randomized paging

If in Case 2 the while-loop ends with λ ≤ ε, then there exists an

unlabeled page with a q-value of at least (1- ε)/u. The requests issued

before and after the while-loop then yield an expected cost of at least

ε+(1- ε)/u ≥ 1/u.

ADV can serve the request sequence so that it incurs a fault only on

the pages that are labeled/requested last in the phases.

67WS 2017/18

2.6 Randomized paging

68WS 2017/18

2.6 Randomized paging

69WS 2017/18

2.6 Randomized paging

General approach to establish a lower bound using Yao’s principle

Task of algorithm designer/analyzer:

Construct a specific probability distribution P0 for generating input.

Evaluate the expected costs of

 every deterministic online algorithm A and

 OPT

so as to obtain lower bound on 𝑐𝐴
𝑃0, for every A. This gives a lower

bound on inf𝐴 𝑐𝐴
𝑃0 and hence on sup𝑃 inf𝐴 𝑐𝐴

𝑃 . By Yao’s principle, one

obtains a lower bound on inf𝑅 𝑐𝑅.

Proof technique

70WS 2017/18

Theorem: Let A be a randomized online paging algorithm. If A is c-

competitive against oblivious adversaries, then c ≥ Hk.

Proof: Alternative proof using Yao‘s principle.

S={p1,…,pk+1} set of k+1 pages

Initially, p1,…,pk are in fast memory.

Probability distribution for generating request sequences.

σ(1) = pk+1

Every σ(t), t ≥ 2, requests a page chosen uniformly at random from

S\{σ(t-1)}.

Consider any deterministic online paging algorithm A.

A has a cost of 1 on σ(1) and an expected cost of 1/k on every

σ(t), t ≥ 2.

71WS 2017/18

2.6 Randomized paging

In order to analyze expected cost, we partition a request sequence into

phases like a MARKING algorithm: The first phase P(1) starts with

σ(1). Phase P(i), i ≥1, ends when k distinct pages have been

requested in P(i) and a request to the (k+1)-st distinct page occurs.

This request forms the first request of P(i+1).

We analyze and compare expected cost in any phase P(i).

Analysis of OPT

OPT can serve the request sequence so that it incurs a page fault only

on the first request of each phase. More precisely, when OPT incurs a

page fault on a page p, all pages of S\{p} are in fast memory, and OPT

can evict the page not referenced in the current phase.

Hence OPT has a cost of 1 per phase.

72WS 2017/18

2.6 Randomized paging

Analysis of algorithm A

The expected cost of A in any P(i) is 1/k · expected length of P(i).

We analyze the expected phase length.

This is a Coupon‘s Collector Problem.

Subphase j, 1≤ j ≤ k: Starts with the j-th distinct page requested

(collected) in P(i). Ends just before the (j+1)-st distinct page is

referenced. When σ(t) is generated, a page is chosen uniformly at

random from S\{σ(t-1)}. Among these k pages, k-(j-1) will terminate the

subphase. Success probability that subphase j ends is (k-(j-1))/k.

The expected length of subphase j is k/(k+1-j).

Summung over all j, the expected length of a phase is k·Hk.

In summary, the expected cost of A in P(i) is Hk.

73WS 2017/18

2.6 Randomized paging

Remark

The above process of generating a request sequence can be viewed

as a random walk on a complete graph Kk+1 consisting of k+1 vertices.

The random walk always resides on one of the vertices. In each time

step it moves to one of the k neighboring vertices chosen uniformly at

random. A request sequence corresponds to the sequence of vertices

visited.

Cover time of a random walk: Expected number of steps to visit all

vertices, starting from an arbitrary vertex. For Kk+1 this is again a

Coupon‘s Collector Problem.

Expected length of a phase, as defined above, is equal to the cover

time.

74WS 2017/18

2.6 Randomized paging

Online algorithm

 Random: On a fault evict a page chosen uniformly at random from

among the pages in fast memory.

Theorem: Random is k-competitive against adaptive online

adversaries.

Theorem: Let A be a randomized online paging algorithm. If A is c-

competitive against adaptive online adversaries, then c ≥ k.

75WS 2017/18

2.6 Randomized paging

Theorem: Random is k-competitive against adaptive online

adversaries.

Proof: Let σ = σ(1), …, σ(m) be an arbitrary request sequence.

SR = set of pages in Random’s fast memory

SADV = set of pages in ADV’s fast memory

Ф = k | SR \ SADV |

Let R(σ(t)) denote the cost incurred by Random on σ(t).

We will show that, for any t with 1≤ t ≤ m, there holds

R(σ(t)) + E[Ф(t) - Ф(t-1)] ≤ k ·ADV(σ(t)).

Hence R(σ(t)) + E[Ф(t)] - E[Ф(t-1)] ≤ k ·ADV(σ(t)) and by summing over

all t we obtain

R(σ) ≤ k ·ADV(σ) - E[Ф(m)] + E[Ф(0)].

Assume that initially the fast memory contains k arbitrary pages.

76WS 2017/18

2.6 Randomized paging

Consider any time t and assume that ADV generates request σ(t)) = x.

1. x ∈ SR and x ∈ SADV

R(σ(t)) + E[ΔФ] = 0 + 0 = k·ADV(σ(t))

2. x ∈ SR and x ∉ SADV

In order to serve the request / page fault, ADV may evict a page

contained in SR, in which case the potential increases by k.

R(σ(t)) + E[ΔФ] ≤ 0 + k = k·ADV(σ(t))

3. x ∉ SR and x ∈ SADV

Since x ∈ SADV \ SR, there must exist a page y ∈ SR \ SADV. With

probability 1/k, Random evicts y, in which case the potential

drops by k.

R(σ(t)) + E[ΔФ] ≤ 1 - 1/k · k = 0 = k·ADV(σ(t))

77WS 2017/18

2.6 Randomized paging

4. x ∉ SR and x ∉ SADV

(Combination of Cases 2 and 3)

When serving the page fault, ADV may evict a page contained in SR,

in which case the potential increases by k.

Then x ∈ SADV \ SR, and there must exist a page y ∈ SR \ SADV. With

probability 1/k, Random evicts y, in which case the potential

drops by k.

R(σ(t)) + E[ΔФ] ≤ 1 + k - 1/k · k = k = k·ADV(σ(t))

78WS 2017/18

2.6 Randomized paging

Theorem: Let A be a randomized online paging algorithm. If A is c-

competitive against adaptive online adversaries, then c ≥ k.

Proof: S={p1,…,pk+1} set of k+1 pages

Initially A has p1,…,pk in fast memory.

Generation of σ: ADV always requests the page not available in A’s fast

memory. Hence A has a fault on every request and A(σ) = m, where m

is the length of σ.

We will define k algorithms B1,…,Bk such that Σ1≤i≤k Bi(σ) = m. The

adversary ADV chooses one of the algorithms uniformly at random so

that E[ADV(σ)] = 1/k · Σ1≤i≤k Bi(σ) = m/k.

79WS 2017/18

2.6 Randomized paging

Definition of Bi, 1≤ i ≤ k: Initially pages S\{pi} are in fast memory. If Bi

has a fault on σ(t), it evicts the page requested by σ(t-1).

We will show that B1,…,Bk always have different configurations, i.e. for

any two Bi, Bj the page not in fast memory is different. This implies that

on every request only one of the k algorithms has a page fault.

Claim: Bi, Bj, with i≠j, always have different configurations.

Proof: Induction on the number of requests served. Statement of the

claim holds initially. Suppose that it holds before the service of a

request σ(t), referencing page p.

- Page p in fast memories of Bi, Bj: Configurations do not change.

- Page p not in fast memory of one of the algorithms, say Bi: Then Bi

evicts the page referenced by σ(t-1), which still remains in the fast

memory of Bj.

80WS 2017/18

2.6 Randomized paging

Deficiencies of the basic results:

 Competitive ratio of LRU/FIFO higher than the ratios observed in

practice (typically in the range [1,2]).

 In practice LRU much better than FIFO

Reason: Request sequences in practice exhibit locality of reference, i.e.

(short) subsequences reference few distinct pages.

81WS 2017/18

2.7 Refinements of competitive paging

1. Access graph model: G(V,E) undirected graph. Each node

represents a memory page. Page p can be referenced after q if p

and q are adjacent in the access graph.

82WS 2017/18

2.7 Refined models

Competitive factors depend on G.

2. Markov paging: n pages

qij = probability that request to page i is followed by request to

page j

Page fault rate of A on σ = # page faults incurred by A on σ / |σ|

83WS 2017/18

2.7 Refined models

𝑞11 … 𝑞1𝑛

⋮ ⋱ ⋮
𝑞𝑛1 … 𝑞𝑛𝑛

Q=

3. Denning‘s working set model: n pages

Concave function

84WS 2017/18

2.7 Refined models

85WS 2017/18

2.7 Refined models

SPARC, GCC, 196 pages

86WS 2017/18

2.7 Refined models

SPARC, COMPRESS, 229 pages

Program executed on CPU characterized by concave function f.

It generates σ that are consistent with f.

Max-Model: σ consistent with f if, for all n ∈ ℕ, the number of distinct

pages referenced in any window of length n is at most f(n).

Average-Model: σ consistent with f if, for all n ∈ ℕ, the average number

of distinct pages referenced in windows of length n is at most

f(n).

87WS 2017/18

2.7 Refined models

4. Inter-request distances

88WS 2017/18

2.7 Refined models

σ = B A C B D A A D B A C D B A C B C A B D A B C

σ = σ(1), … , σ(m)

σ(t) is a distance-l request if

σ(t‘) … … … … σ(t)
A A

l distinct pages

Characteristic vector

89WS 2017/18

2.7 Refined models

C = (c0, …,cn-1) n = #pages

In σ characterized by C there are cl distance-l requests, 0 ≤ l ≤ n-1

RALG(C) = maxσ ALG(σ) / OPT(σ)

90WS 2017/18

2.7 Refined models

Characteristic vector, gcc, 37524334, 468 pages

91WS 2017/18

2.7 Refined models

Characteristic vector, netscape, 22077106, 1037 pages

Characteristic vector

92WS 2017/18

2.7 Refined models

OPT(σ) ≥ max {k + σ𝑙=𝑘
λ 𝑐𝑙(𝑙 − 𝑘 + 1)/(𝑘 − 1) + 𝑐′λ (λ − 𝑘 + 1)/(𝑘 − 1), n}

LRU(σ) = σ𝑙=𝑘
𝑛−1 𝑐𝑙

f(j,γ) = k + σ𝑙=𝑘
𝑗−1

𝑐𝑙(𝑙 − 𝑘 + 1)/(𝑘 − 1) + γ (𝑗 − 𝑘 + 1)/(𝑘 − 1)

g(j,γ) = n + (cj-γ) + σ𝑙=𝑗+1
𝑛−1 𝑐𝑙

f(λ, 𝑐′λ) = g(λ, 𝑐′λ)

93WS 2017/18

2.7 Refined models

Competitiveness gcc
Size of fast memory

94WS 2017/18

2.7 Refined models

Competitiveness netscape
Size of fast memory

List update problem:

Unsorted linear list

95WS 2017/18

2.8 Randomized list update

Request: Access to item in the list

Cost: Accessing the i-th item in the list incurs a cost of i.

Goal: Minimize cost paid in serving σ.

σ = A A C B E D A …

B C E A DL:

Rearrangements: After an access, requested item may be moved at

no extra cost to any position closer to the front of the list

(free exchanges). At any time two adjacent items may be

exchanged at a cost of 1.

96WS 2017/18

2.8 Randomized list update

Algorithm Random Move-To-Front (RMTF): With probability ½, move

requested item to the front of the list.

Theorem: The competitive ratio of RMTF is not smaller than 2, for a

general list length n.

97WS 2017/18

2.8 Randomized list update

Theorem: The competitive ratio of RMTF is not smaller than 2, for a

general list length n.

Proof: Assume that the elements in the initial list are in the order

x1,x2,…,xn.

The request sequence σ consists of phases, where each phase is of

the form

(xn)
k(xn-1)

k … (x1)
k for some k>1.

We first analyze RMTF‘s expected cost to serve (xi)
k, for any 1 ≤ i ≤ n,

assuming that xi is stored at the last position of the list. If xi is moved to

the front of the list on the j-th request of (xi)
k, which happens with

probability (1/2)j, then the service cost is jn+k-j. Thus the expected

service cost is

σ𝑗=1
𝑘 Τ1 2 𝑗 𝑗𝑛 + 𝑘 − 𝑗 ≥ σ𝑗=1

𝑘 Τ1 2 𝑗 𝑗𝑛 = 2𝑛 1 − 𝑘 Τ1 2 𝑘+1 − Τ1 2 𝑘 .

98WS 2017/18

2.8 Randomized list update

The last equation hold because, for any z,

We argue that with probability at least 1-n/2k, xi is at the last position of

the list when (xi)
k is requested. If xi is not at the last position when (xi)

k

is referenced, then there exists an item xj, j≠i, that was not moved to the

front of the list when (xj)
k was served. This happens with probability

1/2k. Since there exist n-1 items xj with j≠i, by the Union Bound, the

probability that xi is not at the last position is upper bounded by

(n-1)/2k < n/2k .

It follows that RMTF‘s expected cost on a phase is at least

2𝑛2 1 − 𝑘 Τ1 2 𝑘+1 − Τ1 2 𝑘 1 − Τ𝑛 2 𝑘 .

OPT can use MTF to serve σ, which incurs a cost of n(n+k-1)≤n(n+k)

per phase.

.
)1(

1)1(
2

1

0

1

z

zkkz
jz

kk
k

j

j

99WS 2017/18

2.8 Randomized list update

We conclude that the ratio c = E[RMTF(σ)]/OPT(σ) satisfies

Setting 𝑘 = 2 log 𝑛 we obtain

and this ratio tends to 2 as n goes to infinity.

.
)/1(

)2/1)()2/1()2/1(1(2 1

nk

nk
c

kkk

.

)/log21(

)/11))(/1()/1(log1(2 22

nn

nnnn
c

100WS 2017/18

2.8 Randomized list update

σ = X X Z Y V U X …

Y Z V X UL:

Unsorted, linear linked list of items

1 0 1 1 0

Algorithm BIT: Maintain bit b(x), for each item x in the list. Bits are

initialized independently and uniformly at random to 0/1.

Whenever an item is requested, its bit is complemented. If

value changes to 1, item is moved to the front of the list.

Theorem: BIT is 1.75-competitive against oblivious adversaries.

See [BY], pages 24-26.

Theorem: BIT is 1.75-competitive against oblivious adversaries.

Proof: We extend the analysis of MTF.

Inversion: ordered pair (x,y) of items such that

x before y in OPT‘s list

x behind y in BIT‘s list

Inversion (x,y) has type 1 if b(x)=0

has type 2 if b(x)=1

Ф = 2 · # type-2 inversions + # type-1 inversions

Intuition: A type-2 inversion is harder to resolve. It requires two requests

to x before BIT can break up a type-2 inversion (x,y).

Ф ≥ 0 Ф(0) = 0 if initial lists of OPT and BIT are identical

101WS 2017/18

2.8 Randomized list update

Fact: At any time and for each item x, b(x) is equal to 0 (respectively

1) with probability ½.

To verify the fact, observe that at any time

b(x) = (initial bit value of x + #requests to x so far) mod 2

and this expression only depends on the initial bit value.

Consider an arbitrary request sequence σ = σ(1),…,σ(m). We will

show that for any t, 1 ≤ t ≤ m,

BIT(σ(t))+ E[Ф(t)-Ф(t-1)] ≤ 1.75 OPT(σ(t)).

This implies

BIT(σ) ≤ 1.75 OPT(σ) - E[Ф(m)] + E[Ф(0)] .

Let σ(t) be an arbitrary request, and let x denote the requested item.

102WS 2017/18

2.8 Randomized list update

1. Analysis of OPT‘s moves

Assume that in OPT‘s list, x is at position k+1. The access cost is k+1.

Suppose that after the access, OPT inserts x behind the i-th item,

where i≤k. For each item y that is passed, an inversion (x,y) can be

created. With equal probabiliy ½ the bit value b(x) is 0 or 1. Thus an

inversion has type-1 or type-2 with equal probability ½, causing an

expected potential increase of ½·1+ ½·2 = 1.5. Since k-i items are

being passed, the expected potential increase is at most 1.5(k-i).

Additionally, OPT may perform, say, p(t) paid exchanges. For each item

swap, an inversion can be created, causing an expected potential

increase of 1.5.

Actual cost of OPT on σ(t) = k+1+p(t)

E[Ф] due to OPT‘s moves ≤ 1.5(k-i+p(t))

103WS 2017/18

2.8 Randomized list update

x

ki

2. Analyis of BIT‘s moves

Assume that in BIT‘s list, x is at position l+1. The access cost is l+1.

Case 1: l ≥ i

Since l ≥ i there must exist at least l-i items yj that are stored before x in

BIT‘s list but behind x in OPT‘s list. Hence there exist at least l-i

inversions of the form (x,yj).

b(x) = 0 before the request: The bit b(x) flips to 1. BIT moves x to the

front of the list and destroys the inversions (x,yj) (potential drop of at

least l-i). For each of the first i items in OPT‘s list, an inversion can be

created (expected potential increase of at most 1.5i). E[Ф] ≤ -(l-i) + 1.5i.

b(x) = 1 before the request: Item x does not move but b(x) changes to 0

so that each inversion (x,yj) changes type, from type-2 to type-1. Thus

Ф ≤ -(l-i).

104WS 2017/18

2.8 Randomized list update

l

x

i

The two above cases, b(x) = 0 and b(x) =1, occur with equal probability

of ½. Therefore:

Actual cost of BIT on σ(t) = l+1

E[Ф] due to BIT‘s moves ≤ -(l-i)+ ½ ·1.5i = -(l-i) +0.75i

BIT(σ(t))+E[Ф] ≤ l+1 + 1.5(k-i+p(t)) - (l-i) + 0.75i

≤ 1.75(k-i+p(t)) + 1.75 i + 1

< 1.75(k+1+p(t))

= 1.75∙OPT(σ(t))

105WS 2017/18

2.8 Randomized list update

2. Analyis of BIT‘s moves

Case 2: l < i

b(x) = 0 before the request: BIT moves x to the front of the list and may

create l inversions, each of which increases the potential by an expected

value of 1.5. Hence E[Ф] ≤ 1.5l.

b(x) = 1 before the request: Item x does not move and b(x) changes to 0

so that each inversion (x,yj) changes type, from type-2 to type-1. Thus

Ф ≤ 0.

Again the two above cases occur with equal probability.

Actual cost of BIT on σ(t) = l+1

E[Ф] due to BIT‘s moves ≤ 0.75l

106WS 2017/18

2.8 Randomized list update

l

x

i

We conclude

BIT(σ(t))+E[Ф] ≤ l+1 + 1.5(k-i+p(t)) + 0.75l

< 1.75(k-i+p(t)) + 1.75 i + 1

< 1.75(k+1+p(t))

= 1.75∙OPT(σ(t)),

where the second inequality holds because l<i.

107WS 2017/18

2.8 Randomized list update

108WS 2017/18

2.8 Randomized list update

σ = … X U Y V V W W X …

W V U Y XL:

Algorithm TIMESTAMP(p): Let 0 ≤ p ≤ 1. Serve a request to item x as

follows.

With probability p move x to the front of the list.

With probability 1-p insert x in front of the first item in the list

that has been referenced at most once since the last request

to x.

Theorem: TIMESTAMP(p), with p = (3- 5)/2, achieves a competitive

ratio of (1+ 5)/2 ≈ 1.62 against oblivious adversaries.

Z

109WS 2017/18

2.8 Randomized list update

Algorithm Combination: With probability 4/5 serve a request sequence

using BIT and with probability 1/5 serve it using

TIMESTAMP(0).

Theorem: Combination is 1.6-competitive against oblivious

adversaries.

Theorem: Let A be a randomized online algorithm for list update. If A is

c-competitive against adaptive online adversaries, for a general

list length, then c ≥ 2.

110WS 2017/18

2.8 Randomized list update

Theorem: Let A be a randomized online algorithm for list update. If A is

c-competitive against adaptive online adversaries, for a general

list length, then c ≥ 2.

Proof: Let n denote the list length.

Request generation: ADV always requests last item in A‘s list.

A(σ) = m·n m = length of the constructed σ

ADV: In order to serve σ, ADV chooses one of the n! possible list

configurations uniformly at random and serves σ with this static list.

Consider an arbitrary request σ(t)=x. With probability (n-1)!/n! =1/n

item x is stored at position i, for any 1 ≤ i ≤ n. Therefore, ADV’s

expected service cost for the request is Σ1≤i≤n i ·1/n = (n+1)/2.

At most 𝑛
2

≤ 𝑛(𝑛 − 1)/2 paid exchanges are required to bring the

initial list into the selected static ordering.

111WS 2017/18

2.8 Randomized list update

Hence the cost ratio c = A(σ)/ADV(σ) satisfies

and the latter ratio tends to 2-2/(n+1) as m goes to infinity.

mnnn

n

nnnm

mn
c

/)1(1

2

2/)1(2/)1(

112WS 2017/18

2.9 Data compression

S = … x1 x1 x2 x1 x2 x3 x3 x2 …

x3 x4 x2 x5 x1L:

String S to be represented in a more compact way using fewer bits.

Symbols of S are elements of an alphabet Σ, e.g. Σ = {x1, …, xn}.

Encoding: Convert string S of symbols into string I of integers.

Encoder maintains a linear list L of all the elements of Σ. It reads the

symbols of S sequentially. Whenever symbol xi has to be encoded,

encoder looks up the current position of xi in L, outputs this position

and updates the list using a given algorithm.

Generates compression because frequently occuring symbols are

stored near the front of the list and can be encoded using small

integers/ few bits.

x6

I = … 5 1 4 2 …

113WS 2017/18

2.9 Data compression

S = … x1 x1 x2 x1 x2 x3 x3 x2 …

x3 x4 x2 x5 x1L:

Decoding: Decoder also maintains a linear list L of all the elements of

Σ. It reads the integers of I sequentially. Whenever integer j has to be

decoded, it looks up the symbol currently stored at position j in L,

outputs this symbol and updates the list using the same algorithm as

the encoder.

x6

I = … 5 1 4 2 …

114WS 2017/18

2.9 Data compression

Integers of I have to be encoded using a variable-length prefix code.

A prefix code satisfies the „prefix property“:

No code word is the prefix of another code word.

Possible encoding of j : 2 log 𝑗 + 1 bits suffice

 log 𝑗 0′s followed by

 binary representation of j, which requires log 𝑗 + 1 bits

115WS 2017/18

2.9 Data compression

Two schemes

 Byte-based compression: Each byte in the input string represents

a symbol.

 Word-based compresion: Each „natural language“ word

represents a symbol.

The following tables report on experiments done using the

Calgary corpus (benchmark library for data compression).

2.9 Byte-based compression

116WS 2017/18

File TS

Bytes % Orig.

MTF

Bytes % Orig. Size in Bytes

bib 99121 89.09 106478 95.70 111261

book1 581758 75.67 644423 83.83 768771

book2 473734 77.55 515257 84.35 610856

geo 92770 90.60 107437 104.92 102400

news 310003 82.21 333737 88.50 377109

obj1 18210 84.68 19366 90.06 21504

obj2 229284 92.90 250994 101.69 246814

paper1 42719 80.36 46143 86.80 53161

paper2 63654 77.44 69441 84.48 82199

pic 113001 22.02 119168 23.22 513216

progc 33123 83.62 35156 88.75 39611

progl 52490 73.26 55183 77.02 71646

progp 37266 75.47 40044 81.10 49379

trans 79258 84.59 82058 87.58 93695

2.9 Word-based compression

117WS 2017/18

File TS

Bytes % Orig.

MTF

Bytes % Orig. Size in Bytes

bib 34117 30.66 35407 31.82 111261

book1 286691 37.29 296172 38.53 768771

book2 260602 42.66 267257 43.75 610856

news 116782 30.97 117876 31.26 377109

paper1 15195 28.58 15429 29.02 53161

paper2 24862 30.25 25577 31.12 82199

progc 10160 25.65 10338 26.10 39611

progl 14931 20.84 14754 20.59 71646

progp 7395 14.98 7409 15.00 49379

Transformation: Given S, compute all cyclic shifts and sort them

lexicographically.

In the resulting matrix M, extract last column and encode it using

MTF encoding. Add index I of row containing original string.

Example:

0 a a b r a c S = a b r a c a

1 a b r a c a

2 a c a a b r

3 b r a c a a

4 c a a b r a

5 r a c a a b (c a r a a b, I=1)

2.9 Burrows-Wheeler transformation

118WS 2017/18

Back-transformation: Sort characters lexicographically, gives first and

last columns of M.

Fill remaining columns by repeatedly shifting last column in

front of the first one and sorting lexicographically.

0 a a b r a c

1 a b r a c a

2 a c a a b r

3 b r a c a a

4 c a a b r a

5 r a c a a b (c a r a a b, I=1)

2.9 Burrows-Wheeler transformation

119WS 2017/18

Back-transformation using linear space:

 M‘= matrix M in which columns are cyclically rotated by one

position to the right.

 Compute vector T that indicates how rows of M and M‘ correspond,

i.e. row j of M‘ is row T[j] in M. Example: T = [4 , 0 , 5 , 1 , 2 , 3]

0 a a b r a c c a a b r a

1 a b r a c a a a b r a c

2 a c a a b r r a c a a b

3 b r a c a a a b r a c a

4 c a a b r a a c a a b r

5 r a c a a b b r a c a a

2.9 Burrows-Wheeler transformation

120WS 2017/18

M M‘

Back-transformation using linear space:

 L : vector, last column of M = first column of M‘

 L[T[j]] is cyclic predecessor of L[j]

For i=0, … , N-1, there holds S[N-1-i] = L[Ti [I]]

2.9 Burrows-Wheeler transformation

121WS 2017/18

2.9 Burrows-Wheeler transformation

122WS 2017/18

File
Bytes % Orig. bits/char Size in Bytes

bib 28740 25.83 2.07 111261

book1 238989 31.08 2.49 768771

book2 162612 26.62 2.13 610856

geo 56974 55.63 4.45 102400

news 122175 32.39 2.59 377109

obj1 10694 49.73 3.89 21504

obj2 81337 32.95 2.64 246814

paper1 16965 31.91 2.55 53161

paper2 25832 31.24 2.51 82199

pic 53562 10.43 0.83 513216

progc 12786 32.27 2.58 39611

progl 16131 22.51 1.80 71646

progp 11043 22.36 1.79 49379

trans 18383 19.62 1.57 93695

Program mean

bits per character

compress 3.36

gzip 2.71

BW-Trans 2.43

2.9 Burrows-Wheeler transformation

123WS 2017/18

Comparison with Lempel-Ziv-based tools (LZW and LZ77)

124WS 2017/18

2.9 Data compression

Assume that S is generated by a memoryless source P= (p1, …, pn).

In a string generated according to P, each symbol is equal to xi with

probability pi.

The entropy of P is defined as

H(P) = σ𝑖=1
𝑛 𝑝𝑖 log (1/𝑝i)

It is a lower bound on the expected number of bits needed to

encoded one symbol in a string generated according to P.

(Shannon‘s Source Coding Theorem)

125WS 2017/18

2.9 Huffman code

Constructs optimal prefix codes.

Code tree constructed using greedy approach.

Maintain forest of code trees.

 Initially, each symbol xi represents a tree consisting of one node

with accumulated probability pi.

 While there exist at least two trees, choose T1, T2 having the

smallest accumulated probabilies and merge them by adding a

new root. New accumulated probability is the sum of those of

T1, T2.

126WS 2017/18

2.9 Data compression

EMTF (P) = expected number of bits needed to encode one symbol

using MTF encoding

Assume that an integer j is encoded using 2 log 𝑗 + 1 bits:

 log 𝑗 0′s followed by

 binary representation of j, which requires log 𝑗 + 1 bits

Theorem: For each memoryless source P, there holds

EMTF (P) ≤ 1 + 2 H(P).

See: J.L. Bentley, D.D. Sleator, R.E. Tarjan, V.K. Wei. A locally

adaptive data compression scheme. CACM 29(4), 320-330.

127WS 2017/18

2.9 Data compression

Theorem: For each memoryless source P, there holds

EMTF (P) ≤ 1 + 2 H(P).

Proof: Let f(j) = 1 + 2 log j.

Let e(xi) be the asymptotic expected position of xi in MTF‘s list.

There holds EMTF (P) ≤ σ𝑖=1
𝑛 𝑝𝑖𝑓 𝑒 𝑥𝑖 .

e(xi) = 1 + expected number of items preceding xi in the list

Item xj precedes xi in MTF‘s list if and only if after the last request to

xi item xj is referenced again. In this case there exists a k ≥ 0 such

that the last request to xi is followed by k requests that are neither to

xi nor to xj and a request to xj.

Prob[xj precedes xi] = Σk≥0 (1-pi-pj)
k pj = pj/(pi+pj)

128WS 2017/18

2.9 Data compression

We obtain

The inequality holds because pi/(pi+pj) ≤ 1, for any i.

We conclude

EMTF (P) ≤ σ𝑖=1
𝑛 𝑝𝑖𝑓(1/𝑝𝑖) = σ𝑖=1

𝑛 𝑝𝑖(1 + 2 log(1/𝑝𝑖)) = 1+ 2 H(P).

.
111

1)(
111 i

n

ij
j

ji

i

n

ij
j ji

ji

i

i

n

ij
j ji

j

i
p

pp
ppp

pp
p

ppp

p
xe

Three problems: Navigation, Exploration, Localization

129WS 2017/18

2.10 Robotics

s

Navigation: Find a short path from s to t.

130WS 2017/18

2.10 Robotics

Robot always knows its current position and the position of t.

Does not know in advance the position/extent of the obstacles.

Tactile robot: Can touch/sense the obstacles.

s
t

The material on navigation is taken from the following two papers.

 A. Blum, P. Raghavan, B. Schieber. Navigating in unfamiliar

geometric terrain. SIAM J. Comput. 26(1):110-137, 1997.

 R.A. Baeza-Yates, J.C. Culberson, G.J.E. Rawlins. Searching in

the plane. Inf. Comput. 106(2):234-252, 1993.

131WS 2017/18

2.10 Robot navigation

Tactile robot has to find a target t on a line. The position of t is not

known in advance.

A Doubling strategy, described on the next page, is 9-competitive.

2.10 Navigation on the line

132WS 2017/18

ts

Doubling strategy: Oscillate around the origin s, with steps to the left

and to the right. In iteration i, i ≥ 1, step a distance of 2i-1 to the

left/right and back to s.

Let n be the distance of t from s. In iteration log 𝑛 the length of the

oscillation is sufficient to reach t. However, the oscillation might be

done in the “wrong” direction, opposite of t. Therefore, the total

distance traversed is upper bounded by

2.10 Navigation on the line

133WS 2017/18

ts

 .92212222 2log1log

log

0

nnnn nn
n

i

i

Reach some point on a vertical wall that is a distance of n away.

Assumption: Obstacles have a width of at least 1 and are aligned with

the axes.

2.10 Wall problem

134WS 2017/18

s

n

Theorem: Every deterministic online algorithm has a competitive ratio

of Ω 𝑛 .

Upper bound: Will design an algorithm with competitive ratio of Ο 𝑛 .

2.10 Wall problem

135WS 2017/18

Theorem: Every deterministic online algorithm has a competitive ratio

of Ω 𝑛 .

Proof:

2.10 Wall problem

136WS 2017/18

s

h

Starting at s, the adversary places obstacles of height h and width 1

right in front of the robot, whenever it makes a progress of 1 in x-

direction. The horizontal distance between neighboring obstacles is ε,

where ε>0 is an arbitrarily small value. This way, n-1 obstacles are

placed.

LR = length of the path traversed by the robot

LOPT = length of the optimum path

There holds LR≥ (n-1)h/2 > nh/4, assuming that n >1.

For the analysis of LOPT, partition the scene into corridors of height h

starting at s. For each corridor, consider the obstacles that are fully

contained in it. One of the next 𝑛 corridors, starting from s, contains

at most 𝑛 full obstacles: If each of the next 𝑛 corridors contained

more than 𝑛 obstacles, then there would be more than 𝑛 𝑛 ≥ n

obstacles in the scene.

2.10 Wall problem

137WS 2017/18

Consider the path that walks to the middle line of this sparse corridor

and then moves in x-direction, walking around the at most 𝑛 obstacles

it hits. This implies LOPT ≤ 𝑛 h + 𝑛 h+ n. The last term accounts for

the movement in x-direction.

Setting h = 𝑛 , there holds

LR > n 𝑛 /4 and LOPT ≤ n + 𝑛 + n + n ≤ 4n

so that the ratio LR/LOPT is in Ω 𝑛 .

2.10 Wall problem

138WS 2017/18

Upper bound: Design an algorithm with competitive ratio of Ο 𝑛 .

Idea: Try to reach wall within a small window around the origin.

Double the window size whenever the optimal offline algorithm

OPT would also have a high cost within the window, i.e. if

OPT has a cost of W within the window of size W.

2.10 Wall problem

139WS 2017/18

2.10 Wall problem

140WS 2017/18

Window of size W: W0 = n (boundaries y = +W/2 y = -W/2)

τ := W/ 𝑛

Sweep direction = north/south

Sweep counter (initially 0)

Always walk in +x direction until obstacle is reached.

Rule 1: Distance to next corner ≤ τ

Walk around obstacle and back to original y-coordinate.

2.10 Wall problem

141WS 2017/18

Rule 2: yn > W/2 and ys < -W/2 (yn and ys are y-coordinates of northern

and southern corners of the obstacle)

W := 4 min {yn , |ys|}

Walk to next corner within the window.

Sweep counter := 0

Sweep direction := north if at ys, and south yn

2.10 Wall problem

142WS 2017/18

yn

ys

Rule 3: Distance to nearest corner > τ but yn ≤ W/2 or ys ≥ -W/2

Walk in sweep direction and then around obstacle.

If window boundary is reached, increase sweep counter by 1

and change sweep direction. If sweep counter reaches 𝑛 ,

double window size and set sweep counter to 0.

2.10 Wall problem

143WS 2017/18

Analysis: Wf = last window size

Lemma: Robot walks a total distance of O(𝑛 Wf).

Lemma: Length of shortest path is Ω(Wf).

2.10 Wall problem

144WS 2017/18

Lemma: Robot walks a total distance of O(𝑛 Wf).

Proof: The horizontal distance traversed by the robot is n. Hence it

suffices to analyze the vertical distance.

Cost of Rule 1: Over all windows, the distance traversed due to Rule 1

is at most 2· τf ·n because each obstacle has a width of at least 1.

Hence the distance is at most 2·Wf / 𝑛 ·n = 2 𝑛 Wf.

Cost of Rules 2 and 3: Consider any fixed window of size W. The

distance traversed due to Rule 2 is at most W. As for Rule 3, one sweep

costs W so that all the sweeps in the window cost 𝑛 W. Hence for a

fixed window, the cost for Rules 2 and 3 is at most 2 𝑛 W.

Whenever the window size increases, it is raised by a factor of at least

2. Therefore, over all windows, the total cost of Rules 2 and 3 is at most

2 𝑛 (Wf + Wf/2 + Wf/4+ …) ≤ 4 𝑛 Wf.

2.10 Wall problem

145WS 2017/18

Lemma: Length of shortest path is Ω(Wf).

Proof: If Wf=n, there is nothing to show because the horizontal

distance traversed by a shortest path is at least n.

Consider Wf > n.

W = largest window in which online robot has executed 𝑛 full sweeps

1. No such window exists or Wf > 2W.

In this case Wf was determined according to Rule 2 and thus the

length of a shortest path satisfies LOPT ≥ Wf/4.

2.10 Wall problem

146WS 2017/18

W = largest window in which online robot has executed 𝑛 full sweeps

2. Wf ≤ 2W

If a shortest path reaches one of the window boundaries of W, then

LOPT ≥ W/2 ≥ Wf /4. If a shortest path does not reach the window

boundaries, it has to cut all the 𝑛 sweeps. In order to cut one

sweep (see figure below), a vertical distance greater than τ ≥ τf /2

has to be traversed because the nearest corner of the obstacle hit is

at a distance greater than τ. Hence to cut all the sweeps, the total

distance traversed is at least 𝑛 τf /2 = Wf /2.

2.10 Wall problem

147WS 2017/18

Cut of a sweep

Square room s = lower left corner t = (n,n) center of room

Rectangular obstacles aligned with axes; unit circle can be

inscribed into any of them. No obstacle touches a wall.

148WS 2017/18

2.10 Room problem

s

t

Greedy <+x,+y>: Walk due east, if possible, and due north otherwise.

Paths <+x,-y>, <-x,+y> and <-x,-y> are defined analogously.

Brute-force <+x>: Walk due east. When hitting an obstacle, walk to

nearest corner, then around obstacle. Return to original

y-coordinate. Path <+y> defined accordingly.

Monotone path from (x1,y1) to (x2,y2): x- and y-coordinates do not

change their monotonicity along the path.

2.10 Paths

149WS 2017/18

Invariant: Robot always knows a monotone path from (x0,n) to (n,y0)

that touches no obstacle. Initially x0 = y0= 0.

In each iteration x0 or y0 increases by at least 𝑛 .

1. Walk to t‘= (x0+ 𝑛 , y0+ 𝑛)

Specifically, walk along monotone path to y-coordinate y0+ 𝑛 ,

then brute-force <+x>. If t‘ is below the monotone path, then walk to

point with y-coordinate y0+ 𝑛 on the monotone path. If t‘ is in an

obstacle, take its north-east corner or point with y-coordinate equal

to n at eastern obstacle boundary.

2. Walk Greedy <+x,+y> until x- or y-coordinate is n. Assume that point

(ො𝑥, n) is reached.

3. Walk Greedy <+x,-y> until a point (n, ො𝑦) or old monotone path is

reached. Gives new monotone path. Set (x0,y0) := (ො𝑥, ො𝑦).

2.10 Algorithm for room problem

150WS 2017/18

4. If x0 < n - 𝑛 and y0 < n - 𝑛 , then goto Step 1.

If y0 ≥ n - 𝑛 , walk to (x0,n) and then brute-force <+x>.

If x0 ≥ n - 𝑛 , walk to (n,y0) and then brute-force <+y>.

Theorem: The above algorithm is O(𝑛)-competitive.

The algorithm can be generalized to rooms of dimension 2N x 2n,

where N ≥ n and t = (N,n).

In Step 1, set t‘= (x0+ 𝑛 r, y0+ 𝑛) where r=N/n. In Step 4 an

x-threshold of n - 𝑛 r is considered.

2.10 Algorithm for room problem

151WS 2017/18

Theorem: The above algorithm is O(𝑛)-competitive.

Proof: In the analysis of Step 1 we first evaluate the length of the path

connecting (a) the point with y-coordinate y0+ 𝑛 on the monotone path

and (b) t‘.

The robot has to walk around at most 𝑛 obstacles because the width

of each obstacle is at least 1. When an obstacle is hit, the nearest

corner is at a distance of at most 𝑛 because no obstacle intersects

the monotone path. Thus the length of the path connecting (a) and (b)

is upper bounded by 2 𝑛 𝑛 + 𝑛 ≤ 3n.

All other movements in Step 1 as well as in Steps 2 and 3 are along

the monotone path and Greedy paths, each having a length of at most

2n.

Hence each iteration of Steps 1-3 traverses a distance of O(n). The

algorithm executes at most 2 𝑛 iterations. Therefore, the total cost of

Steps 1-3 is O(𝑛 n).

2.10 Algorithm for room problem

152WS 2017/18

Step 4 is executed only once. The robot has to walk around at most n

obstacles. For each obstacle, the nearest corner is at a distancee of at

most 𝑛 . This results in a total cost of at most O(𝑛 n).

Since the length of a shortest path is at least n, the theorem follows.

2.10 Algorithm for room problem

153WS 2017/18

154

2.11 Bipartite matching

Input: G = (U ∪ V, E) undirected bipartite graph.

There holds U ∩ V = Ø and E ⊆ U x V.

Output: Matching M of maximum cardinality.

M ⊆ E is a matching if no vertex is incident to two edges of M.

U V

WS 2017/18

155

2.11 Bipartite matching

Input: G = (U V, E)

Output: Matching M of maximum cardinality

U V

WS 2017/18

156

2.11 Online bipartite matching

U given initially v V arrive one by one

v V arrives: neighbors in U are known;

v has to be matched immediately

R.M. Karp, U.V. Vazirani, V.V. Vazirani: An optimal algorithm for on-line

bipartite matching. STOC 1990: 352-358.

U V

WS 2017/18

v

157

2.11 Applications

 Switch routing: U = set of ports V = data packets

 Market clearing: U = set of sellers V = set of buyers

 Online advertising: U = advertiser V= users

switchports

WS 2017/18

158WS 2017/18

159

2.11 Adwords problem

Advertisers Users with queries

WS 2017/18

160

2.11 Adwords problem

• U = set of advertisers Bu= daily budget of advertiser u

• V = sequence of queries v

• ruv= revenue obtained from u when ad is shown to v

Goal: Maximize total revenue, while respecting the budgets.

Unit budgets, unit cost Online bipartite matching

WS 2017/18

Maximization problem

A OPT

Cost: A(σ) OPT(σ)

Online algorithm A is called c-competitive if there exists a constant a,

which is independent of σ, such that

A(σ) ≥ c ∙ OPT(σ) + a

holds for all σ.

161WS 2017/18

2.11 Competitive analysis

162

2.11 Greedy algorithms

An algorithm has the greedy property if an arriving vertex v ∈ V is matched if

there is an unmatched adjacent vertex u ∈ U available.

Theorem: Let A be a greedy algorithm. Then its competitive ratio is at least ½.

Proof: G = (U V, E)

MOPT = optimal matching

2|MOPT| = number of matched vertices in MOPT

Let (u,v) MOPT be arbitrary.

In A’s matching MA at least one of the two vertices is matched.

Hence the number of vertices in A’s matching at least |MOPT|.

We conclude |MA| ≥ ½ ∙ |MOPT| ≥ ½∙|MOPT|.

WS 2017/18

163

2.11 Deterministic online algorithms

Theorem: Let A be any deterministic algorithm. If A is c-competitive,

then c ≤ ½.

Proof: G = (U V, E) |U| = |V| = 2n even

v1 ,…, vn adjacent to all u U

vn+i : If vi is matched by A to uj, then vn+i is adjacent to uj only;

otherwise to all u U

nvi

Vn+i

uj

WS 2017/18

164

2.11 Deterministic online algorithms

A : |MA| ≤ n Among vi and vn+i only one can be matched.

OPT : |MOPT| = 2n vn+1 ,…, v2n with 1 neighbor are matched to them.

All other v can be matched arbitrarily.

nvi

Vn+i

WS 2017/18

165

2.11 Ranking algorithm

Init: Choose permutation π of U uniformly at random.

Arrival of v V: N(v) = set of unmatched neighbors of v

If N(v) ≠ Ø, match v with uN(v) of smallest rank, i.e. smallest

π(u)-value.

u3

u1

u5

u4

u2

WS 2017/18

166

2.11 Analysis of Ranking

Theorem: Ranking achieves a competitive ratio of 1-1/e ≈ 0.632 against

oblivious adversaries.

Outline of the analysis:

1. It suffices to consider graphs G = (U V, E) having a perfect matching

(each vertex is matched).

2. Analyze Ranking on graphs G with a perfect matching.

WS 2017/18

167

2.11 Reduction to G with perfect matching

G = (U V, E) π = permutation of U w U V

H = G \ {w}

w U → permutation obtained from π by deleting w

w V → π

M = Ranking(G, π) MH = Ranking(H, πH)

Lemma: There holds |M| ≥ |MH|.

πH =

WS 2017/18

168

2.11 Lemma: |M| ≥ |MH|

Case 1: w U w = x1

yi matched with xi in Ranking (G,π)

xi+1 matched with yi in Ranking (H, πH)

Process stops with

xk not matched in Ranking (G, π)

→ |MH| = |M|

yk not matched in Ranking (H, πH)

→ |MH| = |M| - 1

x1

x2

y1

y2

x3
y3

WS 2017/18

169

2.11 Lemma: |M| ≥ |MH|

Case 1: w U w = x1

yi matched with xi in Ranking (G,π)

xi+1 matched with yi in Ranking (H, πH)

Process stops with

xk not matched in Ranking (G, π)

→ |MH| = |M|

yk not matched in Ranking (H, πH)

→ |MH| = |M| - 1

x1

x2

y1

y2

x3
y3

WS 2017/18

Case 2: w V analogous

170

2.11 Reduction to G with perfect matching

Corollary: The competitive ratio of Ranking is assumed on graphs G having

a perfect matching.

Proof: G = (U V, E) arbitrary

MOPT = optimum matching for G

H = obtained from G by deleting all vertices not in MOPT

 π |Ranking(G, π)| ≥ |Ranking(H, πH)|

E[|Ranking(G)|] ≥ E[|Ranking(H)|]

MOPT is an optimum matching for both G and H.

WS 2017/18

171

2.11 Analysis on G with perfect matching

|U| = |V| = n t {1, … n}

pt = probability (over all π) that vertex of rank t in U is matched by Ranking

E[|Ranking(G)|] = 1≤t≤n pt

Main Lemma: 1 - pt ≤ 1/n · 1≤s≤t ps

1

n

t

WS 2017/18

172

2.11 Main theorem

Theorem: Ranking achieves competitive ratio of 1-1/e.

Proof: E[|Ranking(G)|] / |OPT(G)| = 1/n · 1≤t≤n pt

Determine the infimum of 1/n · 1≤t ≤n pt

Main Lemma implies 1 + St-1 ≤ St (1 + 1/n) St = 1≤s≤ t ps

St = 1≤s≤ t (1-1/(n+1))s solves inequality with equality

Main Lemma: 1 - pt ≤ 1/n · 1≤s≤t ps

WS 2017/18

173

2.11 Verifying solution to recurrence relation

1

1

1
1

111
1

1

1
11

1

1
1

1

1
1

1
1

1

1
1

1
1

1

11

1

t

tt

t

ts

s

ts

s

t

S

nnnnn

nn

nnn
S

WS 2017/18

174

2.11 Calculating the competitive ratio

 en

nnnnn

nn
S

n

nn

nn

ns

s

n

/11)1/(111

1

1
1

111
1

1

1
11

1

1
1

11

1

WS 2017/18

175

2.11 Establishing the Main Lemma

G = (UV,E) |U| = |V| = n

M* = perfect matching

Fix π and (u,v) ϵ M* such that u has rank t in π.

πi = permutation in which u is reinserted so that its rank is i 1≤ i ≤ n

i

ut

WS 2017/18

π

176

2.11 Claim

Claim: If u is not matched in Ranking (π), then for i = 1,…, n,

v is matched to a vertex of rank at most t in πi in Ranking (πi).

ut

ui

v v

Ranking(π) Ranking(πi)

WS 2017/18

177

2.11 Proof of the Claim

X = { unmatched vertices with rank < t in π when Ranking executed with π }

Xi = { unmatched vertices with rank < t in π when Ranking executed with πi }

Invariant: X Xi holds at any time before the arrival of v.

u’ = partner of v in Ranking(π), has rank < t in π

Invariant when v arrives in Ranking(πi), u’ Xi

and hence u’ is available for a matching with v

u’ has rank ≤ t in πi

ut

v

u‘

WS 2017/18

178

2.11 Proof of the invariant

Invariant: X Xi holds at any time before the arrival of v.

Proof: By induction on the vertex arrivals.

Assume that X Xi holds before the arrival of yV.

Invariant can only be violated if y matched in Ranking(πi) to some xi ϵ Xi ∩ X.

In this case y also gets matched in Ranking(π) to some x ϵ X.

Suppose that x ≠ xi. This implies:

xi has smaller rank than x in πi.

x has smaller rank than xi in π.

Observe that all vertices, different from that of rank t in π, occur in the

same relative order in both π and πi. Hence the vertices contained Xi and

X occur in the same relative order in both π and πi. Therefore we obtain a

contradiction.

WS 2017/18

179

2.11 Establishing the Main Lemma

Main Lemma: 1 - pt ≤ 1/n · 1≤s ≤t ps

Proof: For each π construct a set Sπ .

u = vertex of rank t in π v = vertex matched u in M*

Sπ = { (πi, v) | 1 ≤ i ≤ n }

Sπ gets labeled if, for i = 1,…, n, v is matched to a vertex of rank at most t in

πi when Ranking (πi) is executed.

Claim If u is not matched in Ranking(π), then Sπ gets labeled.

Claim: If u not matched in Ranking (π), then for i = 1,…, n,

v is matched in Ranking (πi) to ui of rank at most t in πi.

WS 2017/18

180

2.11 Establishing the Main Lemma

This implies

1 - pt ≤ # labeled sets Sπ / n! = πP |Sπ|/ (n·n!)

where P = {π | Sπ is labeled }.

Proposition: Elements in all the sets Sπ with π P are distinct.

Using the above proposition we obtain:

1 - pt ≤ πP |Sπ|/ (n·n!) = |UπP Sπ|/ (n·n!)

WS 2017/18

181

2.11 Establishing the Main Lemma

For any π’, count occurrences of π’ in |UπP Sπ| : (π’,v1) (π’,v2) (π’,v3) …

#occurrences of π’ in |UπP Sπ| ≤ #v being matched to vertex of rank ≤ t in π’

= |R (π’)|

R (π’) = { vertices of rank ≤ t in U being matched in Ranking(π’) }

WS 2017/18

182

2.11 Establishing the Main Lemma

R (π‘) = { vertices of rank ≤ t in U being matched in Ranking(π‘) }

We conclude:

1 - pt ≤ |UπP Sπ|/ (n·n!) ≤ π’ |R (π’)| / (n·n!)

= 1/n · π |R (π)| / n!

= 1/n · 1≤s ≤t ps

The last inequality holds because π |R (π)| / n! is the expected number of

vertices of rank ≤ t matched in Ranking, and this quantity is exactly

Σ1≤s≤t ps .

WS 2017/18

183

2.11 Proof of the Proposition

Proposition: Elements in all the sets Sπ with π P are distinct.

Proof: For a fixed π, elements of Sπ = { (πi ,v) | 1 ≤ i ≤ n } are distinct

because they differ in the first component.

Suppose that (πi ,v) = (π’j ,v) where (πi ,v) Sπ (π’j ,v) Sπ’ .

Let u be the vertex matched to v in M*.

Removing u in πi and π’j and reinserting it at position t, we obtain identical

permutation, i.e. π = π’ .

WS 2017/18

184

2.12 Financial Games

Online search: Find maximum/minimum in a sequence of prices that are

revealed sequentially.

Period i: Price pi is revealed. If pi is accepted, then the reward is pi;

otherwise the game continues.

Application: job search, selling of a house.

One-way trading: An initial wealth of D0, given in one currency has to be traded

to some other asset or currency.

Period i: Price/exchange rate pi is revealed. Trader must decide on the

fraction of the remaining initial wealth to be exchanged.

WS 2017/18

185

2.12 Financial Games

Portfolio selection: s securities (assets) such as stocks, bonds, foreign

currencies or commodities

Period i: price vector 𝑝𝑖= (pi1, …, pis)

pij = # units of the j-th asset that can be bought for 1$

vector of price changes 𝑥𝑖= (xi1, …, xis)

xij= pij/pi+1,j

Portfolio: specifies a distribution of the wealth on the s assets just

before period i

𝑏𝑖= (bi1, …, bis) and Σbij=1

At the end of first period the wealth per initial 1$ is σ𝑗=1
𝑠 𝑏1𝑗 𝑥1𝑗

WS 2017/18

186

2.12 Relation between search and trading

Any deterministic (randomized) one-way trading algorithm, that may trade the

initial wealth in parts, can be viewed as a randomized search algorithm,

and vice versa.

Theorem: a) Let A1 be a randomized algorithm for one-way trading. Then there

exists a deterministic algorithm A2 for one-way trading such that

A2(σ) = E[A1(σ)], for all price sequences σ.

b) Let A2 be a deterministic algorithm for one-way trading. Then there exists a

randomized search algorithm A3 such that E[A3(σ)] = A2(σ), for all σ.

WS 2017/18

187

2.12 Relation between search and trading

Theorem: a) Let A1 be a randomized algorithm for one-way trading. Then there

exists a deterministic algorithm A2 for one-way trading such that

A2(σ) = E[A1(σ)], for all price sequences σ.

b) Let A2 be a deterministic algorithm for one-way trading. Then there exists a

randomized search algorithm A3 such that E[A3(σ)] = A2(σ), for all σ.

Proof Idea: a) Any one-way trading algorithm is equivalent, in term of expected

return, to a randomized one-way trading algorithm that trades the initial

wealth at one randomly chosen period.

Any randomized one-way trading algorithm that trades at once is equivalent to

a deterministic trading algorithm that trades the initial wealth in parts.

WS 2017/18

188

2.12 Search problems

Will concentrate on search problems.

Prices in [m,M] 0 < m ≤ M φ := M/m

Discrete time, finite time horizon, n periods; both m and M are known to player.

Online algorithm is c-competitive if there exists a constant a such that

c A(σ) +a ≥ OPT(σ)

for all price sequences.

WS 2017/18

189

2.12 Algorithms

Algorithm Reservation Price Policy (RPP): Accept first price of value at least

p* := 𝑀𝑚. Here p* is called the reservation price.

Theorem: RPP is φ-competitive.

Algorithm EXPO: Let φ = 2k for some positive integer k.

RPPi = deterministic RPP with price m 2i.

With probability 1/k, choose RPPi for i=1, …, k.

Theorem: EXPO is c(φ)log φ-competitive, where c(φ) tends to 1 as φ → ∞.

WS 2017/18

190

2.12 Algorithm RPP

Theorem: RPP is φ-competitive.

Proof: Consider any price sequence σ and let pmax be the maximum price

revealed.

• pmax ≥ p*: c = OPT(σ) / RPP(σ) ≤ M / p* = 𝑀/𝑚

• pmax < p*: c = OPT(σ) / RPP(σ) ≤ pmax / m < p* / m = 𝑀/𝑚

WS 2017/18

191

2.12 Algorithm EXPO

Theorem: EXPO is c(φ)log φ-competitive, where c(φ) tends to 1 as φ → ∞.

Proof: Let σ be any price sequence and pmax be the maximum price revealed.

We first focus on the case that pmax< M.

Let j ∈ {0,…k-1} be the integer such that m2j ≤ pmax < m2j+1.

We modify σ so that the ratio OPT’s return / EXPO’s return can only increase.

1. Immediately before pmax price m2j is revealed.

If EXPO chooses a reservation price of at most m2j, then its return can only

decrease. Otherwise the addition of m2j has no effect.

2. pmax := m2j+1 - ε, for arbitrarily small ε > 0

This increases OPT’s return while EXPO will not get pmax, given

modification 1.

3. Every price p < pmax with m2i ≤ p < m2i+1 is reduced to m2i .

WS 2017/18

192

2.12 Algorithm EXPO

Let m2i, 1≤ i ≤ k, be the reservation price selected by EXPO.

If i ≤ j, then EXPO’s return is at least m2i.

If i > j, then EXPO’s return is at least m.

Hence the expected return of EXPO is at least

m(k-j)/k+ Σ1≤i≤ j m2i/k = m(2j+1+k-j-2)/k.

Since pmax< m2j+1, the ratio OPT’s return / EXPO’s return is upper bounded by

This expression is maximized for j*=k – 2 + 1 / ln 2 and, for this setting,

approaches k=log φ as φ grows.

Finally, assume that pmax= M, and recall that M = m2k. In this case a worst-case

price sequence consists of all the reservation prices revealed in increasing

order. The expected return of EXPO is Σ1≤i≤ k m2i/k = m(2k+1-2)/k. The ratio

OPT’s return / EXPO’s return is upper bounded by k2k/(2k+1-2) ≤ k.

WS 2017/18

.
22

2
1

1

jk
k

j

j

193

2.13 k-server problem

Metric space M; k mobile servers; request sequence σ.

Request: x ∈ M; one of the k servers must be moved to x, if the point is not

already covered. Moving a server from y to x incurs a cost of dist(y,x).

Goal: Minimize total distance traveled by all the servers in processing σ.

Special cases: Paging; caching fonts in printers; vehicle routing.

Results: General metric spaces:

Deterministic: k ≤ c ≤ 2k-1

Randomized: Ω(log k) ≤ c ≤ Õ(log2k log3n), where n is size of M.

Special metric spaces:

Competitive ratio of k for lines, trees, spaces of size N=k+1 and

resistive spaces (modeling electrical networks).

WS 2017/18

194

2.13 k-server problem

Theorem: Let M be a metric space consisting of at least k+1 points and let A be

a deterministic online algorithm. If A is c-competitive, then c ≥ k.

Trees: Will restrict ourselves on metric spaces that are trees.

Consider a request at point r. Server si is a neighbor if no other server is

located between si and r.

Algorithm Coverage: In response to a request at r, move all neighboring

servers with equal speed in the direction of r until one server reaches r.

Theorem: Coverage is k-competitive.

WS 2017/18

195

2.13 Algorithm Coverage

Metric space can be laid out such that a request occurs at the root of the tree.

WS 2017/18

r
neighboring server

non-neighboring server

196

2.13 Analysis Coverage

Theorem: Coverage is k-competitive.

Proof: Potential function Ф = k Mmin + D

Mmin = value of min-cost matching between Coverage‘s servers and

OPT‘s servers

D = Σi<j dist (si,sj) s1,…,sk Coverage‘s servers

Given any σ, we analyze the amortized cost of a request σ(t) at point r.

• OPT moves servers at a total distance of d:

Actual cost: d Ф ≤ k∙d

• Coverage moves m servers a distance of d‘ each.

Actual cost: m∙d‘

Ф in Mmin: W.l.o.g. one neighboring server is matched to OPT‘s server at r.

For this server pair, the matching distance decreases by d‘, while for the

other m-1 server pairs the distance may increase by d‘ each.

Ф ≤ -k∙d‘ + (m-1)∙k∙d‘ = (m-2)∙k∙d‘
WS 2017/18

197

2.13 Analysis Coverage

Ф in D: Consider a non-neighboring server.

One neighboring server moves away, m-1 come closer.

For all the k-m non-neighboring servers:

Ф ≤ (d‘ - (m-1)d‘) (k-m)= -(m-2)d‘(k-m) = -(m-2) k d‘ + (m-2) m d‘

Consider the 𝑚
2

pairs of neighboring servers.

For each pair, the distance decreases by 2d‘.

Ф = -2d‘ m(m-1)/2 = -d‘ m (m-1)

Let C(σ(t)) denote the actual cost incurred by Coverage. Then

C(σ(t)) + ΔФ ≤ m∙d‘ + k∙d + (m-2)∙k∙d‘ -(m-2) k d‘ + (m-2) m d‘ - d‘ m (m-1)

= k∙d = k∙OPT(σ(t)).

WS 2017/18

198

2.14 Metrical task systems

(ℳ, ℛ) ℳ= (M,dist) metric space ℛ = set of allowed tasks

M: set of states in which an algorithm can reside |M| = N

dist(i,j) = cost of moving from state i to state j

r ∈ ℛ : r = (r(1), …, r(N))

r(i) ∈ ℝ0
+ ∪ {∞} cost of serving task in state i

Algorithm A: Initial state 0.

Sequence of requests/tasks: σ = r1, …, rn.

Upon the arrival of ri, A may first change state and then has to serve ri.

A[i] : state in which ri is served.

A(σ) = σ𝑖=1
𝑛 𝑑𝑖𝑠𝑡(A i − 1 , A[i]) + σ𝑖=1

𝑛 ri(A i)

WS 2017/18

199

2.14 Example: paging

Pages p1, …, pn; fast memory of size k.

Sets S1, … Sl, where l = 𝑛
𝑘

. Each set is a subset of {p1, …, pn} having size k.

For each set Si, there is a state si, i = 1, …, 𝑛
𝑘

dist(si,sj) = |Sj\ Si|

Request r = p

r(si) = ቊ
0 if 𝑝 ∈ Si

∞ otherwise

WS 2017/18

200

2.14 Example: list update

List consisting of n items.

n! states si, where 1 ≤ i ≤ n!, for each possible permutation of the n items.

dist(si,sj) = number of paid exchanges needed to transform the two lists

(We may assume w.l.o.g. that algorithm only works with paid

exchanges.)

Request r = x

r(si) = position of item x in list si.

WS 2017/18

201

2.14 Results for metrical task systems

Deterministic: c = 2N - 1

Randomized: Ω(log N / loglog N) ≤ c ≤ O(log2N loglog N)

WS 2017/18

Approximation Algorithms

203

3.1 Basics

NP-hard optimization problems: Computation of approximate solutions

Example: Job scheduling. m identical parallel machines.

n jobs with processing times p1,…, pn. Assign the jobs to machines so

that the makespan is as small as possible.

List scheduling: Assign each job to a least loaded machine.

(2-1/m)-approximation.

General setting: Optimization problem Π, P = set of problem instances

For problem instance I ∈ P, let F(I) denote the set of feasible solutions.

For solution s ∈ F(I), let w(s) denote its value (objective function value).

Goal: Find s ∈ F(I) such that w(s) is minimal if Π is a minimization problem

(and maximal if Π is a maximization problem).

WS 2017/18

204

3.1 Basics

An approximation algorithm A for Π is an algorithm that, given an I ∈ P,

outputs an A(I) = s ∈ F(I) and has a running time that is

polynomial in the encoding length of I.

Algorithm A achieves an approximation ratio of c if

w(A(I)) ≤ c ∙ OPT(I) (Π is a minimization problem)

w(A(I)) ≥ c ∙ OPT(I) (Π is a maximization problem)

for all I ∈ P. Here OPT(I) denotes the value of an optimal solution.

Sometimes an additive constant of b is allowed in the above inequalities. This

constant b must be independent of the input. In this case c is referred to as an

asymptotic approximation ratio.

WS 2017/18

205

3.1 Basics

Problem Max Cut: Undirected graph G=(V,E), where V is the set of vertices and

E is the set of edges. Find a partition (S, V\S) of V such that the

number of edges between S and V\S is maximal.

S is called a cut. Edges between S and V\S are called cut edges.

Symmetric difference: S Δ {v}

S Δ {v} =

S ∪ v if v ∉ S

S \ {v} if v ∈ S

Algorithm Local Improvement (LI):

S:=∅;

while ∃ v ∈ V such that w(S Δ {v}) > w(S) do S := S Δ {v} endwhile;

output S;

Theorem: LI achieves an approximation ratio of 1/2.

206

3.1 Basics

Theorem: LI achieves an approximation ratio of 1/2.

Proof: The while-loop of LI is executed at most |E| times because in each

iteration the number of cut edges increases by at least 1. In every iteration the

value of each of the |V| symmetric differences can be computed in O(|E|) time.

Hence LI runs in polynomial time.

When LI terminates, for every v ∈ V, the number of adjacent cut edges is at

least as large as the number of adjacent non-cut edges: If there were a vertex v

not satisfying this property (see figure below), then S Δ {v} would be a cut with

more cut edges.

v ∈ S

v ∉ Sv v

207

3.1 Basics

By considering all v ∈ V, we obtain

σv∈V (#cut edges adjacent to v) ≥ σv∈V (#non−cut edges adjacent to v) .

In the above inequality the left-hand side expression is twice the number of cut

edges, i.e. 2|LI(G)|. The right-hand side expression is twice the number of non-

cut edges, i.e. 2(|E| - |LI(G)|).

We conclude

2|LI(G)| ≥ 2(|E| - |LI(G)|) and |LI(G)| ≥ ½·|E| ≥ ½·OPT(G).

208

3.2 Traveling Salesman Problem

Traveling Salesman Problem (TSP): Weighted graph G=(V,E) with V={v1,…,vn}

and a function w: E → ℝ0
+ that assigns a length/weight to each edge. Find a tour

that visits each vertex exactly once and has minimum length.

Formally, a tour is a Hamiltonian cycle.

A tour can be encoded as a permutation π on {1,..., n} having the property that

{vπ(i), vπ(i+1)} ∈ E and {vπ(n),vπ(1)} ∈ E.

Length/weight: σ𝑖=1
𝑛−1 w({vπ(i), vπ(i+1)}) + w({vπ(n), vπ(1)})

Euclidean Traveling Salesman Problem (ETSP): n cities s1,…, sn in ℝ2 .

dist(si,sj) = Euclidean distance between si and sj. Find a tour that visits

each city exactly once and has minimum length.

Will design algorithms with approximation ratios of 2 and 1.5.

TSP and ETSP are NP-hard

WS 2017/18

209

3.2 Traveling Salesman Problem

Minimum spanning tree: Weighted graph G=(V,E) with w: E → ℝ. A minimum

spanning tree T is a tree such that each v ∈ V is a vertex of T and σe∈T w(𝑒) is

minimum.

The following algorithm works with a multigraph, i.e. several copies of an edge

may be contained in E.

Algorithms MST:

1. Compute a minimum spanning tree T for G=(V,E) with V={s1,…,sn} and

w(si,sj)= Euclidian distance between si and sj.

2. Construct graph H in which all edges of T are duplicated.

3. Compute an Eulerian cycle C in H (each edge is traversed exactly once).

4. Determine the order sπ(1), …, sπ(n) of the first occurrences of s1,…,sn in C

and output this sequence sπ(1), …, sπ(n).

Theorem: Algorithm MST achieves an approximation ratio of 2.

210

3.2 Example MST algorithm

s4

s8

s2

s3

s1

s5

s6

s7

MST

Possible tour starting at s4: s4 s3 s5 s6 s8 s7 s2 s1

Edge duplication

211

3.2 Traveling Salesman Problem

Theorem: Algorithm MST achieves an approximation ratio of 2.

Proof: Let COPT be a tour of minimum length/weight OPT(I). Let T be a minimum

spanning tree of weight w(T).

There holds w(T) ≤ OPT(I) because the removal of one edge from COPT yields a

spanning tree for G.

The cycle C, computed in Step 3 of the algorithm, has a length of at most

2∙OPT(I) because graph H is obtained from T by edge duplication.

The tour, derived in Step 4, is obtained from C by shortcuts that satisfy the

triangle inequality.

212

3.2 Traveling Salesman Problem

The purpose of the edge duplication is to ensure that each vertex has even

degree.

Proposition: In any tree T the number of vertices having odd degree is even.

Minimum perfect matching: Weighted graph G=(V,E) with w: E → ℝ0
+. A perfect

matching is a subset F ⊆ E such that each vertex v ∈ V is incident to exactly

one edge of F. Precondition: |V| is even. A perfect matching of minimum total

weight is called a minimum perfect matching. There exist polynomial time

algorithms for computing it.

WS 2017/18

213

3.2 Traveling Salesman Problem

Proposition: In any tree T the number of vertices having odd degree is even.

Proof: The total degree D = σ𝑣∈𝑇 deg(𝑣) = 2 #edges of T is an even number.

We split the sum along vertices with even and odd degree.

Since the first sum gives an even value, so does the second sum. Therefore, in

the second sum, the summation is over an even number of vertices.

WS 2017/18

degreeoddwithdegreeevenwith

)deg()deg(
TvTv

vvD

214

3.2 Traveling Salesman Problem

Algorithm Christiofides:

1. Compute a minimum spanning tree T for s1,…,sn.

2. In T determine the set V’ of vertices having odd degree and compute a

minimum perfect matching F for V’.

3. Add F to T and compute an Eulerian cycle C.

4. Determine the order sπ(1), …, sπ(n) of the first occurrences of s1,…,sn on C

and output this sequence sπ(1),…, sπ(n).

Theorem: Algorithm Christofides achieves an approximation factor of 1.5

Theorem: The approximation ratio of the Christofides algorithm is not smaller

than 1.5.

WS 2017/18

215

3.2 Example algorithm Christofides

s4

s8

s2

s3

s1

s5

s6

s7

MST

Possible tour starting at s4: s4 s3 s6 s8 s7 s5 s2 s1

Matching

216

3.2 Traveling Salesman Problem

Theorem: Algorithm Christofides achieves an approximation factor of 1.5

Proof: As in the analysis of the MST algorithm there holds w(T) ≤ OPT(I).

V’ = set of vertices having odd degree in T

𝐶𝑂𝑃𝑇 = TSP tour of minimum length/weight for V

𝐶𝑂𝑃𝑇
′ = TSP tour of minimum length/weight for V’

We first argue that 𝑤(𝐶𝑂𝑃𝑇
′) ≤ 𝑤(𝐶𝑂𝑃𝑇). To this end consider the vertices of V’

on the tour 𝐶𝑂𝑃𝑇 . Connect them by taking shortcuts, satisfying the triangle

inequality, along 𝐶𝑂𝑃𝑇 (cf. figure below). For the resulting cycle C’ visiting V’,

there holds 𝑤(𝐶𝑂𝑃𝑇
′) ≤ 𝑤(𝐶′) ≤ 𝑤(𝐶𝑂𝑃𝑇).

WS 2017/18

vertices of V‘

217

3.2 Traveling Salesman Problem

WS 2017/18

𝐶𝑂𝑃𝑇
′

Cycle 𝐶𝑂𝑃𝑇
′ has an even number of vertices/edges and hence can be

decomposed into two perfect matchings (cf. figure below). At least one of

these matchings has a weight of at most 𝑤(𝐶𝑂𝑃𝑇
′)/2 ≤ 𝑤(𝐶𝑂𝑃𝑇)/2 = OPT(I)/2.

It follows that the cycle C computed in Step 3 of Christofides’ algorithm has a

weight of at most 3/2∙OPT(I).

Finally, in Step 4, shortcuts are taken that satisfy again the triangle inequality.

218

3.2 Traveling Salesman Problem

Theorem: The approximation ratio of the Christofides algorithm is not smaller

than 1.5.

Proof: Consider the following problem instance with 2n+1 cities.

WS 2017/18

n+1 cities

1 1 1

1+ɛ

11 11 11

1

1+ɛ

1

1+ɛ

1+ɛ

Length OPT: 2n+1+4ɛ n cities

Christofides: Blue edges

represent MST; the green

edge is the added matching.

Total length ≥ 2n+n = 3n

219

3.2 Traveling Salesman Problem

Problem Hamiltonian Cycle (HC): G=(V,E) unweighted graph. Does G have a

Hamiltonian cycle, i.e. a cycle that visits each vertex exactly once?

NP-complete

Theorem: Let c>1. If P≠ NP, then general TSP does not have an approximation

algorithm that achieves a performance factor of c.

In above theorem c = c(n) can be an arbitrary function computable in polynomial

time.

WS 2017/18

220

3.2 Traveling Salesman Problem

Theorem: Let c>1. If P≠ NP, then general TSP does not have an approximation

algorithm that achieves a performance factor of c.

Proof: Suppose that there exists an approximation algorithm A for TSP that

achieves an approximation factor of c. We show that in this case HC can be

solved in polynomial time, i.e. P=NP.

Algorithm for HC: Let G=(V,E) be the input for HC.

1. Construct a weighted graph G’=(V’,E’) with V’=V, E’ = VxV and

w(i, j)= ቊ
1 i, j ∈ E
c V i, j ∉ E

2. Apply algorithm A to G’ and w’ to obtain a TSP tour CA.

3. if w(CA) ≤ c|V| then output “G has a Hamiltonian cycle”

else output “G does not have a Hamiltonian cycle”

WS 2017/18

221

3.2 Traveling Salesman Problem

We argue that the algorithm’s output is correct.

If G has a Hamiltonian cycle, then G’ has a TSP tour of length |V|. Since A is a

c-approximation algorithm, it finds a tour CA with w(CA) ≤ c|V|.

If G does not have a Hamiltonian cycle, then every TSP tour in G’ must contain

at least one edge of weight c|V|. Hence w(CA) > c|V|.

WS 2017/18

222

3.3 Job scheduling

Makespan minimization: Schedule n jobs with processing times p1,…, pn to m

identical parallel machines so as to minimize the makespan, i.e. the

completion time of the last job that finishes in the schedule.

Algorithm Sorted List Scheduling (SLS):

1. Sort the n jobs in order of non-increasing processing times p1 ≥ … ≥ pn.

2. Schedule the job sequence using List Scheduling (Greedy).

Theorem: SLS achieves an approximation factor of 4/3.

WS 2017/18

223

3.3 Job scheduling

Theorem: SLS achieves an approximation factor of 4/3.

Proof: It suffices to analyze job sequences σ=J1,…,Jn with p1 ≥ … ≥ pn such

that Jn finishes last in SLS’s schedule and hence defines the makespan.

For, if Jl with l<n finishes last, consider σ‘=J1,…,Jl and show SLS(σ‘) ≤

4/3∙OPT(σ‘). This implies SLS(σ) = SLS(σ‘) ≤ 4/3∙OPT(σ‘) ≤ 4/3∙OPT(σ).

Let OPT = OPT(σ)

Case 1: pn ≤ OPT/3

Job Jn is assigned to a least loaded machine so that the idle time on any

machine in SLS’s final schedule is upper bounded by pn. Therefore,

m∙SLS(σ) ≤ Σ1≤i≤n pi +(m-1)pn, which implies

SLS(σ) ≤ 1/m ∙ Σ1≤i≤n pi +(1-1/m)pn ≤ OPT + OPT/3 = 4/3∙OPT.

WS 2017/18

224

3.3 Job scheduling

Case 2: pn > OPT/3

All jobs J1,…,Jn have a processing time greater than OPT/3.

Lemma: If pn > OPT/3, then SLS constructs an optimal schedule.

Proof: By contradiction. Suppose that Jk is the first job in σ that SLS cannot

assign to the current schedule so that a makespan of OPT is maintained.

Consider SLS‘s schedule immediately before the assignment. Each machine

contains either one or two jobs.

Let M1,…,Mi be the machines containing one job. Call these jobs large.

Let Mi+1,…,Mm be the machines containing two jobs. Call these jobs small.

Jk is also called small.

WS 2017/18

225

3.3 Job scheduling

By assumption Jk cannot be placed on a least loaded machine so that a

makespan of OPT is maintained. Hence Jk cannot be placed on a machine

containing a large job so that a makespan of OPT is maintained. Observe that

Jk is the smallest job in the job sequence considered so far.

We conclude that in an optimal schedule a large job cannot be combined with

any other job.

Hence in an optimal schedule the i large jobs are located on i separate

machines. The remaining 2(m-i)+1 small jobs must be executed on the other

m-i machines. This implies that one machine contains three jobs, which is a

contradiction to the fact that OPT is the optimum makespan.

WS 2017/18

226

3.3 Approximation schemes

An approximation scheme for an optimization problem is a set {A(ɛ) | ɛ > 0} of

approximation algorithms for the problem such that A(ɛ) achieves an

approximation factor of 1+ɛ, in case of a minimization problem, and

1-ɛ in case of a maximization problem.

PTAS = Polynomial Time Approximation Scheme

WS 2017/18

227

3.3 PTAS for Knapsack

Problem Knapsack: n objects with weights w1,…, wn ∈ ℕ and values

v1,…, vn ∈ ℕ. Knapsack with weight bound b. Find a subset

I ⊆ {1, …, n} with σi∈ I wi ≤ b such that σi∈ I vi is maximal.

Problem is NP-hard.

For j=1,…,n and any non-negative integer i, let

Fj(i) = minimum weight of a subset of {1,…, j} whose total value is at

least i. If no such subset exists, set Fj(i) := ∝.

Observation: Let OPT be the value of an optimal solution.

Then OPT = max{i | Fn(i) ≤ b }

Lemma: a) Fj(i) = 0 for i ≤ 0 and j ∈ {1,…,n}

b) F0(0) = 0 and F0(i) = ∝ for i > 0

c) Fj(i) = min {Fj-1(i), wj + Fj-1(i-vj) } for i,j > 0

WS 2017/18

228

3.3 PTAS for Knapsack

Algorithm Exact Knapsack

Fj(i) for j=0 and i ≤ 0 are known.

1. i:=0;

2. repeat

3. i:= i+1;

4. for j := 1 to n do

5. Fj(i) = min { Fj-1(i), wj + Fj-1(i-vj) };

6. endfor;

7. until Fn(i) > b;

8. output i-1;

Theorem: Exact Knapsack has a running time of O(n OPT).

WS 2017/18

229

3.3 PTAS for Knapsack

Algorithm Scaled Knapsack(ɛ) ɛ > 0

1. vmax := max {vj | 1 ≤ j ≤ n };

2. k := max {1, ⌊ɛ vmax / n⌋}

3. for j := 1 to n do vj(k) = ⌊vj / k⌋ endfor;

4. Using algorithm Exact Knapsack, compute OPT(k) and S(k), i.e. the value

and the subset of objects of an optimal solution for the Knapsack

Problem with values vj(k) and unchanged weights wj and b.

5. output OPT* = σj∈ S(k) vj .

Theorem: Scaled Knapsack(ɛ) achieves an approximation factor of 1- ɛ.

Theorem: Scaled Knapsack(ɛ) has a running time of O(n3/ɛ).

WS 2017/18

230

3.3 PTAS for Knapsack

Theorem: Scaled Knapsack(ɛ) achieves an approximation factor of 1- ɛ.

Proof: S = set of objects of an optimal solution

OPT = value of optimal solution

The last inequality holds because S(k) is the set of an optimal solution for the

scaled values.

The last inequality holds because |S| ≤ n and OPT ≥ vmax (each object alone can

be packed feasibly into the knapsack).

WS 2017/18

Sj jkSj jkSj j kvkkvkvOPT //*
)()(

)/1()/||1(

||)1/(/*

maxvknOPTOPTSkOPT

SkvkvkkvkOPT
Sj jSj jSj j

231

3.3 PTAS for Knapsack

k=1: In this case no scaling has occurred and hence OPT* = OPT.

k>1: In this case k ≤ ɛ vmax / n and, equivalently, kn/ vmax ≤ ɛ. It follows

that OPT* ≥ (1-ɛ)OPT.

WS 2017/18

232

3.3 PTAS for Knapsack

Theorem: Scaled Knapsack(ɛ) has a running time of O(n3/ɛ).

Proof: Critical is the call to Exact Knapsack. All other instructions take O(n)

time.

The running time of Exact Knapsack is O(n OPT*) = O(n2 vmax/k) because up to

n objects of value at most vmax/k can be packed into the knapsack.

k=1: In this case ɛ vmax/n < 2 and hence vmax/k = vmax ≤ 2n/ɛ.

k>1: In this case k= ⌊ɛ vmax / n⌋. This implies k ≥ ɛ vmax/n - 1 and, equivalently,

n(1+1/k)/ɛ ≥ vmax/k. We conclude vmax/k ≤ 2n/ɛ.

WS 2017/18

233

3.3 PTAS for Makespan Minimization

m identical parallel machines, n jobs with processing times p1,…, pn.

Algorithm SLS(k)

1. Sort J1,…, Jn in order of non-increasing processing times such

that p1 ≥ … ≥ pn.

2. Compute an optimal schedule for the first k jobs.

3. Schedule the remaining jobs using List Scheduling (Greedy).

Theorem: For constant m and k = (m−1)/ɛ , algorithm SLS(k) is a PTAS.

WS 2017/18

234

3.3 PTAS for Makespan Minimization

Theorem: For constant m and k = (m−1)/ɛ , algorithm SLS(k) is a PTAS.

Proof: Let σ=J1,…,Jn be an arbitrary job sequence with p1 ≥ … ≥ pn. Let Jl be the

job that finishes last in SLS(k)‘s schedule and defines the makespan.

C = makespan SLS(k) OPT = optimum makespan

Case 1: l ≤ k

C = OPT(J1,…,Jk) ≤ OPT(J1,…,Jn) = OPT and thus C = OPT.

Case 2: l>k

Since Jl is placed on a least loaded machine, the idle time on any machine is

upper bounded by pl. Hence

mC ≤ Σ1≤i≤n pi + (m-1)pl which implies

C ≤ 1/m∙Σ1≤i≤n pi + (m-1)/m∙pl ≤ OPT + (m-1)/m∙pl.

Moreover, OPT ≥ 1/m∙Σ1≤i≤n pi ≥ 1/m∙Σ1≤i≤k pi ≥ 1/m∙Σ1≤i≤k pl = k/m∙pl and thus

pl ≤ m/k∙OPT.

WS 2017/18

235

3.3 PTAS for Makespan Minimization

We conclude C ≤ OPT + (m-1)/k∙OPT.

Setting k = (m−1)/ɛ , we obtain C ≤ (1+ ɛ)OPT.

As for the running time, an optimal schedule for J1,…,Jk can be computed by full

enumeration, which takes O(mk) = O(m(m−1)/ɛ) time. The last expression is

mO(m/ɛ).

WS 2017/18

236

3.3 PTAS for Makespan Minimization

Will construct a PTAS for an arbitrary/variable number of machines.

Problem Bin Packing: n elements a1, …, an ∈ [0,1]. Bins of capacity 1. Pack the

n elements into bins, without exceeding their capacity, so that the

number of used bins is as small as possible.

Observation: There exists a schedule with makespan t if and only if p1, …, pn

can be packed into m bins of capacity t.

Notation: I = {p1, …, pn}

bins(I,t) = minimum number of bins of capacity t needed to pack I

OPT = min {t | bins(I,t) ≤ m}

LB ≤ OPT ≤ 2 LB LB = max {
1

𝑚
σ𝑖=1

𝑛 pi, max
1≤𝑖≤𝑛

pi}

Execute binary search on [LB, 2LB] and solve a bin packing problem for each

guess.

WS 2017/18

237

3.3 PTAS for Makespan Minimization

Bin packing for a constant number of element sizes.

k = number of element sizes t = capacity of bins

Problem instance (n1, …, nk) with σ𝑗=1
𝑘 n𝑗 = n

Subproblem specified by (i1, …, ik) where ij is the number of elements of

element size j.

bins(i1, …, ik) = minimum number of bins to pack (i1, …, ik)

WS 2017/18

238

3.3 PTAS for Makespan Minimization

Compute Q = { (q1,…,qk) | bins(q1, …, qk) = 1, 0 ≤ qi ≤ ni for i=1, …, k}

Q contains O(nk) elements

Compute k-dimensional table with entries bins(i1, …, ik),

where (i1, …, ik) ∈ {0,…, n1} x … x {0,…, nk}

Initialize bins(q)=1 for all q ∈ Q and

compute bins(i1, …, ik) = 1 + minq∈Q bins(i1-q1,…, ik-qk)

Takes O(n2k) time.

Reduction from scheduling to bin packing: Two types of errors occur.

- Round the element sizes to a bounded number of sizes.

- Stop the binary search to ensure polynomial running time.

WS 2017/18

239

3.3 PTAS for Makespan Minimization

Basic algorithm: ɛ = error parameter t ∈ [LB,2LB]

1. Ignore jobs of processing time smaller than ɛt.

2. Round down the remaining processing times.

pi ∈ [tɛ (1+ɛ)i, tɛ(1+ɛ)i+1) i ≥ 0 is rounded to tɛ (1+ɛ)i

tɛ(1+ɛ)i+1 < t implies i+1 < log1+ɛ 1/ɛ and k = log1+ɛ 1/ɛ job

classes suffice

3. Compute optimal solution to this problem with bin capacity t.

Makespan for original job sizes is at most t(1+ɛ).

4. Remaining jobs ignored so far are first assigned to the available capacity in

the open bins. Then new bins of capacity t(1+ɛ) are used.

Let α(I,t,ɛ) denote the number of used bins.

WS 2017/18

240

3.3 PTAS for Makespan Minimization

Lemma: α(I,t,ɛ) ≤ bins(I,t)

Proof: Obvious if no new bins are opened to assign the small, initially ignored

elements. Each time a new bin is opened, all the open ones are filled

to an extent of at least t.

Corollary: min {t | α(I,t,ɛ) ≤ m} ≤ OPT.

Execute binary search on [LB,2LB] until the length of the search interval is at

most ɛLB.

(1/2)i LB ≤ ɛLB implies i = log2 1/ɛ

Let T be the right interval boundary when the search terminates.

WS 2017/18

241

3.3 PTAS for Makespan Minimization

Lemma: T ≤ (1+ ɛ) OPT

Proof: min {t | α(I,t,ɛ) ≤ m} in the interval [T-ɛLB, T].

Hence T ≤ min {t | α(I,t,ɛ) ≤ m} + ɛLB ≤ (1+ ɛ) OPT.

Basic algorithm with t = T produces a makespan of at most (1+ ɛ)T

Theorem: The entire algorithm produces a solution with a makespan of at

most (1+ ɛ)2T ≤ (1+ 3ɛ) OPT.

The running time is O(n2k log2 1/ɛ) where k = log1+ɛ 1/ɛ .

WS 2017/18

242

3.4 Max-SAT and randomization

Problem Max-≥kSAT: Clauses C1,…,Cm over Boolean variables x1,…,xn.

Ci = li,1 ˅ … ˅ li,k(i) where k(i) ≥ k and

literals li,j ∈ { x1, തx1, …, x𝑛, തx𝑛 } for j=1,…,k(i)

Find an assignment to the variables that maximizes the number of

satisfied clauses.

Example: C1 = x1˅ തx2 ˅ x3 C2 = x1˅ തx3 C3 = x2˅ തx3

Max-≥kSAT is NP-hard

WS 2017/18

243

3.4 Max-SAT and randomization

Definition: A randomized approximation algorithm is an approximation

algorithm that is allowed to make random choices. In polynomial time a

random number in the range {1,…,n}, n ∈ ℕ, is chosen, where the

coding length of n is polynomial in the coding length of the input. The

bits of this number serve as a random source

Algorithm A achieves an approximation factor of c if

E[w(A(I))] ≤ c ·OPT(I) (in case of a minimization problem)

E[w(A(I))] ≥ c ·OPT(I) (in case of a maximization problem)

for all I ∈ P.

WS 2017/18

244

3.4 Max-SAT and randomization

Algorithm RandomSAT:

for i:=1 to n do

Choose a bit b ∈ {0,1} uniformly at random;

if b=0 then xi := 0 else xi := 1 endif;

endfor;

Output the assignment of the variables x1,…,xn;

Theorem: The expected number of satisfied clauses achieved by RandomSAT

is at least (1-1/2k)m.

WS 2017/18

245

3.4 Max-SAT and randomization

Theorem: The expected number of satisfied clauses achieved by RandomSAT

is at least (1-1/2k)m.

Proof: For j=1,…,m, define

Xj = ቊ
1 Cj satisfied
0 otherwise

.

Then X = Σ1≤j≤m Xj is the number of satisfied clauses.

A clause Cj is not satisfied if each of its k(j) literals gives 0. This happens with

probability 1/2k(j) because each Boolean variable is equal to 0 (or 1) with

probability ½. Thus Prob[Xj=0] = 1/2k(j) and

E[X] = Σ1≤j≤m E[Xj] = Σ1≤j≤m Prob[Xj=1] = Σ1≤j≤m (1-Prob[Xj=0])

= Σ1≤j≤m (1- 1/2k(j)) ≥ Σ1≤j≤m (1- 1/2k) = (1- 1/2k) m.

WS 2017/18

246

3.4 Max-SAT and randomization

Derandomization

E[X|B] = expected value of X if event B holds

Algorithm DetSAT:

for i:=1 to n do

Compute E0 = E[X | xj = bj for j=1,…, i-1 and xi = false];

Compute E1 = E[X | xj = bj for j=1,…, i-1 and xi = true];

if E0 ≥ E1 then bi := 0 else bi := 1; endif;

endfor;

Output b1,…,bn;

Theorem: DetSAT satisfies at least E[X] = (1-1/2k)m clauses.

Algorithm achieves the best possible performance. If P ≠ NP, no approximation

factor greater than 1-1/2k + ε, for ε > 0, can be achieved.

WS 2017/18

247

3.4 Max-SAT and randomization

Theorem: DetSAT satisfies at least E[X] = (1-1/2k)m clauses.

Proof: For i=0,…,n, let Ei = E[X | xj = bj for j=1,…, i].

E0 = E[X] = expected number of satisfied clauses in RandomSAT

En = number of satisfied clauses in DetSAT

We will show Ei ≥ Ei-1, for i=1,…,n. This implies En ≥ E0 =E[X].

Ei-1 = E[X | xj = bj for j=1,…, i-1]

= ½∙E[X | xj = bj for j=1,…, i-1 and xi = false]

+ ½∙E[X | xj = bj for j=1,…, i-1 and xi = true]

= ½∙(E0 + E1) (E0, E1 are the expected values defined in the i-th iteration)

≤ max{E0,E1}

= E[X | xj = bj for j=1,…, i] = Ei .

WS 2017/18

248

3.4 Max-SAT and randomization

LP relaxations

Example: max x+y

s.t. x + 2y ≤ 10

3x - y ≤ 9

x,y ≥ 0

Consider Max-SAT, which corresponds to Max-≥1SAT

Formula φ with clauses C1,…,Cm over Boolean variables x1,…,xn.

For each clause Cj define

Vj,+ = set of unnegated variables in Cj

Vj,- = set of negated variables in Cj

WS 2017/18

249

3.4 Max-SAT and randomization

Formulation as integer linear program

For each xi introduce variable yi. For each clause Cj introduce variable zj.

yi= ቊ
1 xi = true
0 xi = false

zj= ቊ
1 Cj satisfied
0 Cj not satisfied

max σj=1
m zj

s.t. j=1,…,m

yi, zj ∈ {0,1} i=1,…,n j=1,…,m

Integer linear programming (ILP) is NP-hard.

Theorem: (Khachyian 1980) LP is in P.

WS 2017/18

jVxi iVxi i zyy
jiji

)1(
,, ::

250

3.4 Max-SAT and randomization

Relaxed linear program for MaxSAT

max σj=1
m zj

s.t. j=1,…,m

yi, zj ∈ [0,1] i=1,…,n j=1,…,m

Algorithm RRMaxSAT (RandomizedRounding MaxSAT)

Find optimal solution (ො𝑦1, … , ො𝑦𝑛) (Ƹ𝑧1, … , Ƹ𝑧m) to the relaxed LP for MaxSAT;

for i:=1 to n do

Choose a bit b ∈ {0,1} such that b = ቊ
1 with probability ෝ𝑦𝑖

0 with probability 1 − ෝ𝑦𝑖

if b=1 then xi := 1 else xi := 0 endif;

endfor;

Output the assignment of the variables x1,…,xn;

jVxi iVxi i zyy
jiji

)1(
,, ::

251

3.4 Max-SAT and randomization

Theorem: RRMaxSAT achieves an approximation factor of 1-1/e ≈ 0.632.

Theorem: Given a formular φ, apply both RandomSAT and RRMaxSAT and

select the better of the two solutions. Then the resulting algorithm achieves an

approximation factor of ¾.

WS 2017/18

252

3.4 Max-SAT and randomization

Theorem: RRMaxSAT achieves an approximation factor of 1-1/e ≈ 0.632.

Proof: Let OPT(φ) be the maximum number of clauses that can be satisfied in

φ. There holds OPT(φ) ≤ Σ1≤j≤m ොzj.

For j=1,…,m, let

Xj= ቊ
1 Cj satisfied in solution of RRMaxSAT
0 otherwise

and let X = Σ1≤j≤m Xj be the total number of satisfied clauses.

Obviously, E[X] = Σ1≤j≤m E[Xj] = Σ1≤j≤m Prob[Xj=1]. There holds

where

WS 2017/18

,))ˆ1(1()ˆ1(]0[Prob
,, ::

jiji Vxi iVxi ij yyX

.ˆ)ˆ1(ˆ
,, :: jVxi iVxi i zyy

jiji

253

3.4 Max-SAT and randomization

Lemma 1: Let y1,…,yk be real numbers with 0 ≤ yi ≤ 1, for i=1,…,k, and

Σ1≤i≤k yi ≥ y. Then ς𝑖=1
𝑘 (1 − 𝑦𝑖) ≤ (1-y/k)k.

Lemma 2: For all k ∈ ℕ and x ∈ [0,1], there holds 1-(1-x/k)k ≥ (1-(1-1/k)k)x.

By Lemma 1,

Hence, using Lemma 2,

We conclude

WS 2017/18

.))(/ˆ1(]0[Prob)(jk

jj jkzX

.ˆ)/11(

ˆ)))(/11(1(

))(/ˆ1(1]1[Prob

)(

)(

j

j

jk

jk

jj

ze

zjk

jkzX

).(OPT)/11(ˆ)/11(][
1

ezeXE jmj

254

3.4 Max-SAT and randomization

Proof of Lemma 1: The inequality of arithmetic and geometric means states

that, for non-negative real numbers a1,…,ak, there holds

Set ai = 1-yi. We obtain

Proof of Lemma 2: For any x ∈ [0,1], let f(x) = 1-(1-x/k)k and g(x) = (1-(1-1/k)k)x.

Function f is concave in (0,1) since the second derivative is equal to

-(k-1)/k∙(1-x/k)k-2 and hence non-positive. Function g is linear.

Observe that f(0)=g(0) and f(1)=g(1). It follows that f(x) ≥ g(x), for all x ∈ [0,1].

WS 2017/18

.)(/1 /1

11

kk

i i

k

i i aak

.)/1()/11()1(
11

kkk

i i

k

i i kyyky

255

3.4 Max-SAT and randomization

Theorem: Given a formular φ, apply both RandomSAT and RRMaxSAT and

select the better of the two solutions. Then the resulting algorithm achieves an

approximation factor of ¾.

Proof: Let

m1= expected number of satisfied clauses of RandomSAT

m2= expected number of satisfied clauses of RRMaxSAT

We will show that max{m1,m2} ≥ ¾∙OPT(φ).

Let k(j) = # literals in Cj.

The last inequality holds because 0 ≤ ෝ𝑧𝑗 ≤ 1.

WS 2017/18

m

j j

jk zjkm
1

)(

2
ˆ)))(/11(1(

m

j j

jkm

j

jk zm
1

)(

1

)(

1
ˆ)2/11()2/11(

256

3.4 Max-SAT and randomization

The last inequality follows from the next lemma.

Lemma: For all k ∈ ℕ, there holds 1-1/2k + 1-(1-1/k)k ≥ 3/2.

Proof: The statement of the lemma is equivalent to (1-1/k)k ≤ 1/2 - 1/2k.

We have 1 − 1/𝑘 𝑘 = σ𝑖=0
𝑘 𝑘

𝑖
(−1/𝑘)𝑖 ≤ 1 − 𝑘

1
1/𝑘 + 𝑘

2
1/𝑘 2.

The inequality holds because, for any i ≥ 0, − 𝑘
𝑖

1/𝑘 𝑖 + 𝑘
𝑖+1

1/𝑘 𝑖+1 ≤ 0.

We conclude (1-1/k)k ≤ 1 – 1 + k(k-1)/(2k2) = 1/2- 1/(2k) ≤1/2 – 1/2k.

WS 2017/18

).(OPT4/3

ˆ)))(/11(1()2/11((2/1

2/)(}max{

)(

1

)(

2121

 j

jkm

j

jk zjk

mmmm

257

3.5 Probabilistic approximation algorithms

Definition: A probabilistic approximation algorithm for an optimization problem

is an approximation algorithm that outputs a feasible solution with

probability at least ½.

Problem Hitting Set: Ground set V = {v1,…,vn} and subsets S1,…, Sm ⊆ V.

Find the smallest set H ⊆ V with H ∩ Sl ≠ ∅ for l=1,…,m.

H is called a hitting set.

WS 2017/18

258

3.5 Probabilistic approximation algorithms

Formulation as ILP: Variables x1, …, xn

xj= ቊ
1 if vj ∈ HOPT

0 if vj ∉ HOPT

min σj=1
n xj

s.t. σj:v
j
∈S

𝑙
xj ≥ 1 l=1,…,m

xj ∈ {0,1} j=1,…,n relaxed to xj ∈ [0,1]

WS 2017/18

259

3.5 Probabilistic approximation algorithms

Algorithm RRHS (RandomizedRounding HittingSet)

Find optimal solution (ො𝑥1, … , ො𝑥𝑛) to the relaxed LP for HittingSet;

H := Ø;

for i:=1 to ln(2m) do

for j:=1 to n do

Choose a bit b ∈ {0,1} such that b = ቊ
1 with probability ො𝑥j

0 with probability 1 − ො𝑥𝑗

if b=1 then H := H ∪ {vj} endif;

endfor;

endfor;

Output H;

Theorem: For each instance of HittingSet there holds:

(1) RRHS finds a feasible solution with probability at least ½.

(2) E[|RRHS(I)|] ≤ ln(2m) OPT(I).

WS 2017/18

260

3.5 Probabilistic approximation algorithms

Theorem: For each instance of HittingSet there holds:

(1) RRHS finds a feasible solution with probability at least ½.

(2) E[|RRHS(I)|] ≤ ln(2m) OPT(I).

Proof: There holds OPT(I) ≥ σ𝑗=1
𝑛 ො𝑥𝑗.

Let Hi be the set of elements added to H in the i-th iteration of the outer

for-loop, counting elements already contained in H.

We first prove part (2). There holds E[|Hi|] = σ𝑗=1
𝑛 ො𝑥𝑗 ≤ OPT(I) and

WS 2017/18

).()2ln(|][||][|

)2ln(

1
IOPTmHEHE

m

i i

261

3.5 Probabilistic approximation algorithms

For the proof of part (1) we first focus on any set Sl,1≤l≤m, and evaluate

Prob[H∩Sl= ∅]. Consider any Hi. There holds

where k(l) is the number of elements in Sl. The first inequality follows

from Lemma 1, used in the analysis of RRMaxSAT. Here we take into

account that σj:v
j
∈S

𝑙
ො𝑥j ≥ 1. The second inequality holds because 1-x ≤ e-x,

for any x ϵ [0,1].

It follows that

because H∩Sl= ∅ if and only if Hi∩Sl= ∅, for i=1,…, ln(2m) . By the Union

Bound (Boole‘s inequality) we conclude

WS 2017/18

,/1))(/11()ˆ1(] Ø SH[Prob)(

:li elkx lk

Svj j
lj

)2/(1)/1(] Ø SH[Prob
)2ln(

l me
m

.2/1)2/(] Ø SHsuch that [Prob l mmSl

262

3.5 Probabilistic approximation algorithms

Theorem: Let p be a fixed polynomial and A be a polynomial time

algorithm that, for each instance I of an optimization problem,

computes a feasible solution with probability at least 1/p(|I|).

Then, for each ɛ>0, there exists a polynomial time algorithm Aɛ,

that outputs a feasible solution with probability 1-ɛ.

Proof: Algorithm Aɛ(I)

for i:= 1 to p I ln(1/ϵ) do

Compute solution S using A;

if S is feasible then output S and break endif;

endfor;

Set k := p I ln(1/ϵ) . Then

where the second inequality uses the fact that 1-x ≤ e-x, for x ϵ [0,1].
WS 2017/18

,)(|))(|/11(

]output feasible producenot does)([Prob

)/1ln(|)(|/1

 eeIp

IA

kIpk

263

3.5 Probabilistic approximation algorithms

Theorem: Let A be a randomized approximation algorithm with

approximation factor c for a minimization problems. Then, for any

ɛ>0 and p<1 there exists an approximation algorithm Aɛ,p that, for

each input instance I and probability at least p, computes a

solution of value at most (1+ɛ)·c·OPT(I).

Proof: Assume w.l.o.g. that A always computes a feasible solution.

X : random variable for w(A(I))

By Markov‘s inequality, Prob[X ≥ (1+ɛ)E[X]] ≤ 1/(1+ɛ).

Choose k:=k(p,ɛ) such that
1

1+𝜀
k ≤ 1-p.

Algorithm Aɛ,p(I)

for i:= 1 to k do

wi := w(A(I));

endfor;

Output min1≤i≤k wi;

WS 2017/18

264

3.5 Probabilistic approximation algorithms

For any i, 1≤i≤k, there holds Prob[wi ≥ (1+ɛ)E[X]] ≤ 1/(1+ɛ) and thus

Prob[w ≥ (1+ɛ)E[X]] ≤ 1/(1+ɛ)k ≤ 1-p.

Since A is a c-approximation algorithm we conclude that, with probability

at least p,

w = Aɛ,p(I) ≤ (1+ɛ)∙E[X] ≤ (1+ɛ)∙c∙OPT(I).

WS 2017/18

265

3.6 Set Cover

Problem: Universe U = {u1,…,un}. Sets S1,…,Sm ⊆ U with associated non-

negative costs c(S1),…,c(Sm). Find J ⊆ {1,…,m} such that j∈Jڂ Sj = U and

σj∈J c(Sj) minimal.

Greedy approach: Repeatedly choose the most cost-effective set. At any time

let C be the set of covered elements. Cost-effectiveness of S is c(S) / |S-C|.

Algorithm Greedy:

1. C:= Ø;

2. while C ≠ U do

3. Determine the set S having the smallest ratio α = c(S) / |S-C|;

4. Choose S and set price(e) := α , for all e ∈ S-C;

5. C := C ∪ S;

6. endwhile;

7. Output the selected sets;

266

3.6 Set Cover

Theorem: Greedy achieves an approximation factor of Hn = σ𝑘=1
𝑛 1/𝑘.

Theorem: The approximation factor of Greedy is not smaller than Hn.

WS 2017/18

267

3.6 Set Cover

Theorem: Greedy achieves an approximation factor of Hn = σ𝑘=1
𝑛 1/𝑘.

Proof: Number the elements e1,…,en in the order in which they are covered

by Greedy. The cost of the selected sets is charged to the newly covered

elements, according to price(e); cf. line 4 of the algorithm.

Let OPT be the cost of an optimal solution.

Lemma: For k=1,…,n, there holds price(ek) ≤ OPT/(n-k+1).

Proof: Consider the iteration in which ek gets covered by Greedy. Assume

that Greedy has already selected sets S1
G,…, St

G and will choose St+1
G in the

current iteration covering ek. Let Ct = S1
G ∪ … ∪ St

G be the current partial cover.

On the other hand, consider the set selection of an optimal solution. This

selection may choose some of the sets S1
G,…, St

G and, additionally, consists of

sets S1
∗,…, Sl

∗ to form a full cover.

WS 2017/18

268

3.6 Set Cover

For i=1,…,l, let 𝑛i
∗= | Si

∗ − Ct | be the number of elements newly covered by

Si
∗ w.r.t. Ct. Observe that 𝑛1

∗+ ⋯ + 𝑛l
∗ ≥ |U-Ct|.

There holds:

In the last sum, the ratios represent the cost-effectiveness of the respective

sets. One of these sets must have a cost-effectiveness of at most OPT/|U-Ct|

since otherwise

WS 2017/18

*

*

*
*

1*

1

*

1**

1

)(
...

)(
)(...)(OPT l

l

l
l n

n

Sc
n

n

Sc
ScSc

OPT.)...(
||

OPT
 OPT **

1

 l

t

nn
CU

269

3.6 Set Cover

It follows that St+1
G has a cost-effectiveness of at most OPT/|U-Ct| because

Greedy always chooses a set with the best cost-effectiveness.

Immediately before selecting St+1
G , Greedy has covered at most k-1 elements

so that |U-Ct| ≥ n-(k-1).

We conclude that ek is charged a cost of at most OPT/(n-k+1). □

In order to finish the proof of the theorem, we observe that the cost of Greedy

is Σ1≤k≤n price(ek) ≤ Σ1≤k≤n OPT/(n-k+1) = Hn∙OPT.

WS 2017/18

270

3.6 Set Cover

Theorem: The approximation factor of Greedy is not smaller than Hn.

Proof: Consider an input instance with universe U = {u1,…,un} and sets

S1,…,Sn+1. For i=1,…,n, set Si contains element ui and has a cost c(Si)=1/i.

Set Sn+1contains all the elements u1,…,un and has a cost of c(Sn+1)=1+ɛ.

Greedy will iteratively choose the sets Sn,…,S1, incurring a cost of Hn.

An optimal solution picks Sn+1, paying a cost of 1+ɛ only.

WS 2017/18

271

3.7 Duality in linear programming

Motivation: Estimate the optimum objective function value of a given (primal)

LP without actually solving the LP. Thereby construct an associated dual LP.

Example

min 7x1 + x2 + 5x3 Standard form for minimization problem:

s.t. x1 - x2 + 3x3 ≥ 10 In the contraints, inequalities are „≥“

5x1 + 2x2 - x3 ≥ 6 All variable are non-negative

x1, x2, x3 ≥ 0

Feasible solution: vector (x1,…,xn) satisfying all the constraints

z*: value of optimal solution

WS 2017/18

272

3.7 Duality in linear programming

Upper bound: z* ≤ 30? Certificate (2,1,3)

Upper bound: z* ≥ 10? Seems harder to verify.

First constraint is a certificate.

Better: Add both contraints.

7x1 + x2 + 5x3 ≥ (x1 - x2 + 3x3) + (5x1 + 2x2 - x3) ≥ 10 + 6

Systematically: Find multiplies for the constraints such that, for each variable,

the weighted sum of the coefficients is a lower bound on the coefficient in the

objective function.

Dual LP: max 10y1 + 6y2

s.t. y1 + 5y2 ≤ 7

-y1 + 2y2 ≤ 1

3y1 - y2 ≤ 5

y1, y2 ≥ 0

WS 2017/18

273

3.7 Duality in linear programming

General programs:

Primal Program

min σj=1
n cj xj

s.t. σj=1
n aij xj ≥ bi i=1,…,m

xj ≥ 0 j=1,…,n

Dual Program

max σi=1
m bi yi

s.t. σi=1
m aij yi ≤ cj j=1,…,n

yi ≥ 0 i=1,…,m

WS 2017/18

274

3.7 Duality in linear programming

Dual of the dual program gives again the primal program.

By the construction of dual programs:

• Any feasible solution to the dual program is a lower bound for the primal

program.

• Any feasible solution to the primal program is an upper bound for the dual

program.

Let (x1,…, xn) be a feasible solution to the primal program.

Let (y1,…, ym) be a feasible solution to the dual program.

If they lead to the same objective function value, then they are optimal.

275

3.7 Duality in linear programming

Theorem: Weak Duality

Let (x1,…, xn) and (y1,…, ym) be feasible solutions to the primal and dual

programs, respectively. Then σj=1
n 𝑐j𝑥𝑗 ≥ σi=1

m 𝑏i𝑦𝑖 .

Proof: There holds

σj=1
𝑛 𝑐j𝑥𝑗 ≥ σj=1

𝑛 σi=1
𝑚 𝑎𝑖𝑗𝑦𝑖 𝑥𝑗 = σi=1

𝑚 σj=1
𝑛 𝑎𝑖𝑗𝑥𝑗 𝑦𝑖 ≥ σi=1

m 𝑏i𝑦𝑖.

The first inequality holds because (y1,…,ym) satisfies the constraints of the

dual program and the x1,…, xn are non-negative.

The second inequality holds because (x1,…, xn) satisfies the constraints of the

primal program and the y1,…, ym are non-negative.

276

3.7 Duality in linear programming

Theorem: LP-Duality

The primal program has a finite optimum if and only if the dual program has a

finite optimum.

Vectors x*= (𝑥1
∗, … , 𝑥𝑛

∗) and y*= (𝑦1
∗, … , 𝑦𝑚

∗) are optimal solutions if and only if

σj=1
n cj𝑥𝑗

∗ = σi=1
m bi𝑦𝑖

∗
.

Theorem: Complementary Slackness

Let x=(𝑥1 , … , 𝑥𝑛) and y= (𝑦1 , … , 𝑦𝑚) be feasible solutions to the primal and

dual programs, respectively. The solutions x, y are optimal if and only if the

following conditions hold.

Primal slackness conditions: For each j = 1,…,n there holds

xj = 0 or σi=1
m aij𝑦𝑖 = 𝑐𝑗

Dual slackness conditions: For each i = 1,…,m there holds

yi = 0 or σj=1
n aij𝑥𝑗 = 𝑏𝑖

277

3.7 Dual fitting technique

Consider a minimization problem (analogously maximization problem)

1. (P) Primal program; val(x*) = value of an optimal solution x*.

(D) Dual program

2. Compute solution x for (P) and vector y for (D), which may be infeasible,

such that val(x) ≤ val‘(y), where val‘(y) is the objective function value of

(D).

3. Divide y by α such that y‘= y / α is feasible for (D). Then val‘(y‘) ≤ val(x*).

4. Technique achieves an approximation factor of α because

val(x) ≤ val‘(y) = val‘(α y‘) = α val‘(y‘) ≤ α val(x*).

WS 2017/18

278

3.7 Set Cover and LP

Problem: Universe U = {u1,…,un}. Sets S1,…,Sm ⊆ U with associated non-

negative costs c(S1),…,c(Sm). Find J ⊆ {1,…,m} such that j∈Jڂ Sj = U and

σj∈J c(Sj) minimal.

Formulation as LP: Set system Σ = {S1,…,Sm}

(P) min ΣSΣ c(S) xS

s.t. ΣS: eS xS ≥ 1 e U

xS {0,1} S Σ relaxed to xS [0,1]

(D) max ΣeU ye

s.t. Σ eS ye ≤ c(S) S Σ Intuitively: Want to pack elements into

ye ≥ 0 e U sets s.t. cost of the sets is observed.

WS 2017/18

279

3.7 Set Cover and LP

Greedy approach: Repeatedly choose the most cost-effective set. At any time

let C be the set of covered elements. Cost-effectiveness of S is c(S) / |S-C|.

Algorithm Greedy:

1. C:= Ø;

2. while C ≠ U do

3. Determine the set S having the smallest ratio α = c(S) / |S-C|;

4. Choose S and set price(e) := α, for all e ∈ S-C;

5. C := C ∪ S;

6. endwhile;

7. Output the selected sets;

Theorem: Greedy achieves an approximation factor of Hn.

280

3.7 Set Cover and LP

Theorem: Greedy achieves an approximation factor of Hn.

Proof: We verify the property specified in Step 2 of the dual fitting approach.

Given the solution computed by Greedy, define xS = 1 for each set S that is

selected by Greedy. For all other sets S Σ, define xS = 0.

For each e U, define ye = price(e) as specified by Greedy.

There holds

val(x) = ΣSΣ c(S) xS = ΣeU price(e) = ΣeU ye = val(y),

i.e. the required inequality is satisfied with equality.

It remains to take care of Step 3.

281

3.7 Set Cover and LP

Lemma: For each S Σ, there holds ΣeS price(e) ≤ Hn∙c(S).

Proof: Consider any set S and let k be the number of elements in S. Number

the elements e1,…,ek in the order in which they get covered by Greedy.

Consider the point in time when ei gets covered, 1≤i≤k. At that time at most

k-(i-1) elements of S are covered so that the cost-effectiveness of S is upper

bounded by c(S)/(k-i+1). If Greedy does not pick S, it selects a set whose

cost-effectiveness is at most c(S)/(k-i+1) and thus price(ei) ≤ c(S)/(k-i+1).

We conclude that ΣeS price(e) ≤ Σ1≤i≤k c(S)/(k-i+1) = Hk∙c(S) ≤ Hn∙c(S). □

Set ye
′ = ye/Hn. Then by the above lemma,

ΣeS ye
′ = ΣeS ye/Hn = ΣeS price(e)/Hn ≤ c(S).

282

3.7 Primal-dual algorithms

Repeatedly modify the primal and dual solutions until relaxed complementary

slackness conditions hold.

(P) min σj=1
n cj xj (D) max σi=1

m bi yi

s.t. σj=1
n aij xj ≥ bi i=1,…,m s.t. σi=1

m aij yi ≤ cj j=1,…,n

xj ≥ 0 j=1,…,n yi ≥ 0 i=1,…,m

Relaxed primal slackness conditions: Let α≥1. For each j = 1,…,n, there holds

xj = 0 or cj/α ≤ σi=1
m aij𝑦𝑖 ≤ cj

Relaxed dual slackness conditions: Let ß≥1. For each i = 1,…,m, there holds

yi = 0 or bi ≤ σj=1
n aij𝑥𝑗 ≤ ß b𝑖

WS 2017/18

283

3.7 Primal-dual algorithms

Theorem: Let x,y be feasible primal and dual solutions satisfying the relaxed

complementary slackness conditions. Then val(x) ≤ αß val’(y).

Hence val(x) ≤ αß val(x*).

Proof: There holds

val(x) = σj=1
𝑛 𝑐j𝑥𝑗 ≤ α σj=1

𝑛 σi=1
𝑚 𝑎𝑖𝑗𝑦𝑖 𝑥𝑗 = α σi=1

𝑚 σj=1
𝑛 𝑎𝑖𝑗𝑥𝑗 𝑦𝑖 ≤ αß σi=1

m 𝑏i𝑦𝑖

= αß val’(y).

WS 2017/18

284

3.7 Primal-dual algorithms

General scheme:

• Many algorithms work with α = 1 or ß =1.

• Algorithm starts with non-feasible primal „solution“ and feasible dual solution,

e.g. x=0 and y=0.

• In each iteration one improves the feasibility of the primal solution and

the optimality of the dual solution until the primal solution is feasible

and the relaxed complementary slackness conditions hold.

• Primal solution is always modified such that it remains integral. Modifications

of the primal and dual solutions are done in a synchronized way.

WS 2017/18

285

3.7 Primal-dual algorithm for Set Cover

(P) min val(x) = ΣSΣ c(S) xS (D) max ΣeU ye

s.t. ΣS: eS xS ≥ 1 e U s.t. ΣeS ye ≤ c(S) S Σ

xS [0,1] S Σ ye ≥ 0 e U

Choose α = 1 and ß = f f = frequency of the element occurring most often in

any set

Set is called dense if ΣeS ye = c(S)

Relaxed primal slackness conditions: For S Σ, xS=0 or ΣeS ye = c(S)

Intuitively, cover contains only dense sets.

Relaxed dual slackness conditions: For e U, ye = 0 or 1 ≤ ΣS: eS xS ≤ f

Intuitively, each element is covered at most f times.

WS 2017/18

286

3.7 Primal-dual algorithm for Set Cover

Algorithm:

1. Set x=0 and y=0. No element is covered.

2. while there exists an uncovered element e do

(a) Increase ye until a set S is dense;

(b) Add all dense sets S to the cover and set xS=1;

(c) Elements of all sets of (b) are covered;

endwhile;

3. Output x;

Theorem: The above algorithm achieves an approximation factor of f.

Theorem: The approximation factor of the above algorithm is not smaller than f.

WS 2017/18

287

3.7 Primal-dual algorithm for Set Cover

Theorem: The above algorithm achieves an approximation factor of f.

Proof: When the algorithm terminates, all elements are covered.

No constraint of (D) is violated since dense sets are added to the cover and, for

the corresponding elements e, the dual variable ye is not increased any further.

Hence vectors x and y are feasible.

Since dense sets are added to the cover, the relaxed primal slackness

conditions hold. Each element occurs in at most f sets so that the relaxed primal

slackness conditions hold as well.

WS 2017/18

288

3.7 Primal-dual algorithm for Set Cover

Theorem: The approximation factor of the above algorithm is not smaller than f.

Proof: Let U={e1,…,en+1}.

There are n sets.

For i=1,…n-1, set Si = {ei,en} and c(Si)=1.

Moreover, Sn={e1,…,en+1} and c(Sn)=1+ɛ, for arbitrary ɛ>0.

There holds f=n.

Iteration 1: Algorithm raises 𝑦𝑒𝑛
to 1 and adds S1,…,Sn-1 to the cover.

Iteration 2: Algorithm raises 𝑦𝑒𝑛+1
to ɛ and adds Sn to the cover.

The algorithm incurs a total cost of n+ɛ, while the optimum solution picks Sn+1

and has a cost of 1+ɛ only.

WS 2017/18

289

3.8 Shortest Superstring

Problem: Σ finite alphabet, n strings S = {s1,…, sn}. Find shortest string s such

that all si of S are substring of s. W.l.o.g. no si is substring of any sj,

where i ≠ j.

Example: S = {ate, half, lethal, alpha, alfalfa} s = lethalalphalfalfate

WS 2017/18

290

3.8 Shortest Superstring

Reduction to Set Cover: Let si,sj be strings such that the last k characters of

si are equal to the first k characters of sj.

σijk = composition of si and sj, with an overlap of k characters, where k ≥ 1

M = set of all σijk, for all feasible combinations of i,j and k ≥ 1

U = {s1,…,sn}

Sets: set(π) for all π ∈ M ∪ U where

set(π) = {si ∈ U | si is substring of π}

cost of set(π) is equal to |π|

WS 2017/18

291

3.8 Shortest Superstring

Algorithm (Shortest Superstring via Set Cover):

1. Apply the Greedy algorithm for Set Cover to the above Set Cover

instance. Let set(π1), … , set(πk) be the selected sets.

2. Concatenate π1, … , πk in an arbitrary order and output the resulting

string.

Lemma: The above algorithm outputs a feasible solution.

Lemma: There holds OPTSC ≤ 2 OPT, where OPT is the length of the shortest

superstring and OPTSC is the optimum solution to the Set Cover instance.

Corollary: The above algorithm achieves an approximation factor of 2Hn.

WS 2017/18

292

3.8 Shortest Superstring

Lemma: The above algorithm outputs a feasible solution.

Proof: Each string si, 1≤i≤n, is contained in at least one of the sets set(π),

where π ∈ M ∪ U. In Step 1 of the algorithm a cover of U is computed. Hence

each si is contained in at least one of the sets set(π1), … , set(πk) determined

in this step. It follows that each si, 1≤i≤n, is substring of at least one of the

strings π1, … ,πk.

WS 2017/18

293

3.8 Shortest Superstring

Lemma: There holds OPTSC ≤ 2·OPT, where OPT is the length of the shortest

superstring and OPTSC is the cost optimum solution to the Set Cover instance.

Proof: Let S be a shortest superstring for s1,…,sn. We will show that there

exists a solution to the Set Cover instance whose cost is upper bounded by

2|S|.

In S mark the first occurrence of each of the strings s1,…,sn. Recall that no

string is substring of another string. Therefore, the startpoints of these strings

are distinct. Similarly, the endpoints are distinct.

WS 2017/18

294

3.8 Shortest Superstring

WS 2017/18

S

s1
b

s3
b

s2
b

s1
e

s3
e

s2
e

π2

π1

π3

295

3.8 Shortest Superstring

We next group the strings according to their occurrence in S; cf. the figure on

previous page.

s1
b = first string occurring in S s1

e = last string overlapping with s1
b

For any i ≥ 2:

si
b = first string occurring after si−1

e si
e = last string overlapping with si

b

For any i ≥ 1: πi = range between si
b and si

e

Each of the strings s1,…,sn is substring some πi, i ≥1. Therefore the sets

set(πi), i ≥1, form a solution to the Set Cover instance.

Observe that, for any i ≥ 1, string πi+2 does not overlap with πi: The first string

contained in πi+2 does not overlap with the first string in πi+1 and hence with no

string in πi.

We conclude Σi odd |πi | ≤ |S| and Σi even |πi | ≤ |S|.

WS 2017/18

296

3.9 Minimum-Degree Spanning Tree

Minimum-Degree Spanning Tree: Given an undirected unweighted graph

G=(V,E), find a spanning tree T of G so as to minimize the maximum degree

of vertices in T.

Notation:

n = |V|

dT(u) = degree of vertex u in tree T

Δ(T) = maxu∈V dT(u)

T* = spanning tree that minimizes the maximum degree

OPT = Δ(T*)

WS 2017/18

297

3.9 Minimum-Degree Spanning Tree

Improving Pair: [u; (v,w)]

T ∪ (v,w) creates a cycle C containing u.

max {dT(v), dT(w)} ≤ dT(u) – 2

l = log2 𝑛

Algorithm Local Improvement:

1. T := arbitrary spanning tree;

2. while there exists an improving pair [u; (v,w)] with dT(u) ≥ Δ(T) – l do

3. Add (v,w) to T;

4. Delete an edge incident to u on the cycle created;

5. endwhile;

6. Output the resulting locally optimal tree;

WS 2017/18

298

3.9 Minimum-Degree Spanning Tree

Theorem: Let T be a locally optimal tree. Then Δ(T) ≤ 2 OPT + l.

Theorem: The algorithm finds a locally optimal tree in polynomial time.

WS 2017/18

299

3.9 Minimum-Degree Spanning Tree

Theorem: Let T be a locally optimal tree. Then Δ(T) ≤ 2 OPT + l.

Proof: We develop a lower bound on OPT that relates to Δ(T).

General approach: Identify and delete k specific edges in T. This breaks T

into k+1 components. Moreover, identify a set S of vertices such that every

edge of G connecting different components is incident to a least one vertex of

S.

Tree T* contains at least k edges with endpoints in different components

because T* connects all vertices of V. By the choice of S, each such edge is

incident to at least one vertex of S. Therefore, the average degree of vertices

of S in T* is at least k/|S|. Thus OPT ≥ k/|S|.

In order to apply this general approach, we make use of the following claim.

WS 2017/18

300

3.9 Minimum-Degree Spanning Tree

Si = set of vertices of degree at least i in T.

Claim: (a) For each Si, where i ≥ Δ(T) – l, there exist at least (i-1)|Si|+1 distinct

edges of T incident on vertices in Si. After removing these edges, each edge

of G that connects distinct components is incident to at least one vertex in Si-1.

(b) There exists an i ≥ Δ(T) – l+1 such that ½·|Si-1| ≤ |Si|.

Let i be an integer satisfying part (b) of the claim. Delete all the edges of T

incident to vertices in Si. Part (a) implies that k = (i-1)|Si|+1 distinct edges are

deleted and that every edge of G connecting different components is incident

to a vertex in S = Si-1. Using again part (b) we obtain

OPT ≥ k/|S| = ((i-1))|Si|+1) / |Si-1| > (i-1)|Si| / |Si-1| ≥ (i-1)|Si-1| / (2|Si-1|) = (i-1)/2

≥ (Δ(T) – l)/2,

which is equivalent to Δ(T) ≤ 2 OPT + l.

WS 2017/18

301

3.9 Supplement: Proof of the Claim

Part (a): In T the total degree of vertices in Si is at least i|Si|. There exist at

most |Si|-1 edges in T having both endpoints in |Si| because T does not

contain a cycle. (Observe that by adding m edges to set of m vertices, one

creates a cycle.) Hence the total number of distinct edges incident to vertices

is Si is at least i|Si| - (|Si|-1) = (i-1)|Si|+1.

In T remove the edges incident to vertices in Si. Consider any edge e =(v,w)

connecting different components. There are two cases.

• Edge e belongs to T: In this case e is one of the edges removed. At least

one endpoint is in Si and hence in Si-1.

• In T edge e closes a cycle: This cycle must contain a vertex u of Si

because e connects different components, which are linked in T using the

removed edges. Since [u; (v,w)] is not an improving pair, there holds dT(v)

≥ dT(u) - 1 or dT(w) ≥ dT(w) - 1. Thus v ∈ Si-1 or w ∈ Si-1.

WS 2017/18

302

3.9 Supplement: Proof of the Claim

Part (b): Suppose that ½·|Si-1| > |Si| holds for i = Δ(T) – l+1,…, Δ(T). Then

|SΔ(T) –l| > 2 |SΔ(T) –l+1| > 22 |SΔ(T) –l+2| > … > 2l |SΔ(T) | ≥ n.

The last inequality holds because l = log2 𝑛 and |SΔ(T) | ≥ 1. We obtain

|SΔ(T) –l| > n, which is a contradiction.

WS 2017/18

303

3.9 Supplement: Analysis running time

Theorem: The algorithm finds a locally optimal tree in polynomial time.

Proof: Define a potential function. For any T, let Ф(T) = σ𝑣 ∈𝑉 3𝑑𝑇(𝑣) .

The initial potential is upper bounded by n3n. The lowest potential is attained

for a path, having a potential of 2·3+(n-2)32. The latter value is greater than n,

for n ≥ 2.

We will show that, for any improving move changing a tree T into T‘, there

holds Ф(T’) ≤ (1 - 2/(27n3)) Ф(T).

The number of steps / improving moves by the algorithm is then upper bounded

by k = 27n4 ln(3) / 2 because

n3n · (1 - 2/(27n3))k ≤ n3n ·𝑒−2𝑘/(27𝑛3) = n3n ·𝑒−𝑛 ln 3 = n.

The inequality holds because 1-x ≤ e-x, for x ∈ [0,1].

WS 2017/18

304

3.9 Supplement: Analysis running time

Consider an improving move [u; (v,w)], changing the current tree T into T‘.

At u the degree decreases from, say, i to i-1. The resulting potential change is

-3i+3i-1 = -2·3i-1.

Consider any of the two vertices v and w. The degree of the vertex increases

from, say, j to j+1, resulting in a potential increase of 3j+1-3j = 2·3j ≤ 2·3i-2. The

last inequality holds because the degree of both v and w is by at least 2

smaller than the degree of u. For the two vertices v and w, the total increase in

potential is upper bounded by 4·3i-2.

Thus Ф(T’) - Ф(T) ≤ -2·3i-1 + 4·3i-2 = -2·3i-2 ≤ -2·3Δ(T)-l-2 . There holds

3l ≤ 3 · 3log2𝑛 ≤ 3 · 4log2𝑛 ≤ 3 · 22 log2𝑛 = 3n2.

We conclude Ф(T’) - Ф(T) ≤ -2/(27n2)·3Δ(T) = -2/(27n3)·n·3Δ(T) ≤ -2/(27n3)·Ф(T)

because Ф(T) ≤ n·3Δ(T).

WS 2017/18

