Brewery Problem

Brewery brews ale and beer.
» Production limited by supply of corn, hops and barley malt

> Recipes for ale and beer require different amounts of

resources
Corn Hops Malt Profit
(kg) (kg) (kg) €
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

Brewery Problem

Corn Hops Malt Profit
(kg) (kg) (kg) (€
ale (barrel) 5 4 35 13
beer (barrel) 15 4 20 23
supply 480 160 1190

How can brewer maximize profits?

> only brew ale: 34 barrels of ale = 442¢€
> only brew beer: 32 barrels of beer = 736€
> 7.5 barrels ale, 29.5 barrels beer = 776 €
> 12 barrels ale, 28 barrels beer = 800€
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Brewery Problem

Linear Program

» Introduce variables a and b that define how much ale and
beer to produce.

» Choose the variables in such a way that the objective
function (profit) is maximized.

> Make sure that no constraints (due to limited supply) are

violated.
max 13a + 23b
s.t. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Standard Form LPs

LP in standard form:
input: numbers a;j, c;, b;
output: numbers x;

n = #decision variables, m = #constraints

vV v.v Y

maximize linear objective function subject to linear
(in)equalities

n
max > CjX;j
it max clx

n

, s.t. Ax =

s.t. z aijx;j bi 1<i<m X >
j=1

xj 2 0 1<j=<n
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Standard Form LPs

Original LP
max 13a + 23b
st. 5a + 15b <480
4a + 4b <160
35a + 20b <1190
a,b =0

Standard Form
Add a slack variable to every constraint.

max 13a + 23b

st. 5a + 15b + s =480
4a + 4b + Sp =160
35a + 20b + S;m =1190
a |, b , sc , sn , Sm =0

Standard Form LPs

There are different standard forms:

standard form

max clx min cTx
st. Ax = b st. Ax = b
x = 0 x = 0

standard standard
maximization form minimization form

max c’x min cTx
st. Ax =< b st. Ax = b
x = 0 x = 0
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Standard Form LPs

It is easy to transform variants of LPs into (any) standard form:

> less or equal to equality:

—3b +5c + 12
a-3b+5c<12 = crs
s>0

> greater or equal to equality:

-3b -s=12
a73b+5c212:>a 3h45¢ =
s=>0

> min to max:

mina — 3b +5¢ = max-a + 3b - 5c¢

Standard Form LPs
It is easy to transform variants of LPs into (any) standard form:
> equality to less or equal:

a—-3b+5c=<12

<
a—-3b+5c=12 = A +3b—5c < —12

> equality to greater or equal:

a—-3b+5c=>12
-3b + =12
a-3b+se = _a+3b-5c>—-12
> unrestricted to nonnegative:
x unrestricted = x=x"-x",x7=20,x" =0
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Standard Form LPs

Observations:
> a linear program does not contain x?2, cos(x), etc.

» transformations between standard forms can be done
efficiently and only change the size of the LP by a small
constant factor

> for the standard minimization or maximization LPs we could
include the nonnegativity constraints into the set of
ordinary constraints; this is of course not possible for the
standard form
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Fundamental Questions

Definition 1 (Linear Programming Problem (LP))

Let A€ Q""" b e Q™ ce Q" x e Q. Does there exist
xeQ'st. Ax=b,x>0,clx > o?

Questions:
» Is LPin NP?
» Is LP in co-NP?

» |Is LPin P?

Input size:

» n number of variables, m constraints, L number of bits to
encode the input
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Geometry of Linear Programming

beer b
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Geometry of Linear Programming
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Definitions

Let for a Linear Program in standard form
P={x]|Ax =b,x = 0}.

v

P is called the feasible region (Losungsraum) of the LP.

v

A point x € P is called a feasible point (gultige Losung).

> If P + () then the LP is called feasible (erfullbar). Otherwise,
it is called infeasible (unerfillbar).

» An LP is bounded (beschrankt) if it is feasible and

> cTx < o for all x € P (for maximization problems)
» ¢Tx > —oo for all x € P (for minimization problems)

Definition 2

Given vectors/points x1,...,xr € R™, > A;x; is called
» linear combination if A; € R.
> affine combination if A; € Rand >; A; = 1.

> convex combination if A; € Rand >; A; =1 and A; = 0.

» conic combination if A; € R and A; > 0.

Note that a combination involves only finitely many vectors.
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Definition 3
A set X < R" is called
» alinear subspace if it is closed under linear combinations.
> an affine subspace if it is closed under affine combinations.
» convex if it is closed under convex combinations.
>

a convex cone if it is closed under conic combinations.

Note that an affine subspace is not a vector space

Definition 4
Given a set X < R™,
» span(X) is the set of all linear combinations of X
(linear hull, span)
» aff(X) is the set of all affine combinations of X
(affine hull)
» conv(X) is the set of all convex combinations of X
(convex hull)
» cone(X) is the set of all conic combinations of X
(conic hull)
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Definition 5
A function f : R™ — R is convex if for x, € R" and A € [0, 1]
we have

SAx+ (1 -A)y) <Af(x)+ 1 -A)f(y)

Lemma 6
IfP < R", and f : R™ — R convex then also

Q={xeP|fx) =<t}

Dimensions

Definition 7
The dimension dim(A) of an affine subspace A = R" is the
dimension of the vector space {x —a | x € A}, where a € A.

Definition 8
The dimension dim(X) of a convex set X < R" is the dimension
of its affine hull aff(X).
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Definition 9
Aset H< R™is a hyperplane if H = {x | alx = b}, for a = 0.

Definition 10
A set H < R" is a (closed) halfspace if H = {x | a’x < b}, for
a + 0.

Definitions

Definition 11
A polytop is a set P < R™ that is the convex hull of a finite set of
points, i.e., P = conv(X) where | X| = c.
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Definitions Definitions

Definition 12
A polyhedron is a set P < R™ that can be represented as the
intersection of finitely many half-spaces

{H(allbl)llH(amibm)}l Where
Theorem 14

H(ai,b;) = {x € R" | a;x < b;} . P is a bounded polyhedron iff P is a polytop.
Definition 13
A polyhedron P is bounded if there exists B s.t. ||x||»> < B for all
x € P.
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Definition 15

n n
Let P < R", a € R" and b € R. The hyperplane Equivalent definition for vertex:

H(a,b) = {x e R" | alx = b} Definition 18
Given polyhedron P. A point x € P is a vertex if 3c € R™ such
is a supporting hyperplane of P if max{a’x | x € P} = b. that cTy < cTx, forall y € P, v # x.
Definition 16
Let P c R". Fisafaceof Pif F =P or F =P nH for some Definition 19
supporting hyperplane H. Given polyhedron P. A point x € P is an extreme point if
Definition 17 Aa,b = x,a,b € P,with Aa + (1 — A)b = x for A € [0, 1].
Let P < R™.
» aface v is a vertex of P if {v] is a face of P. Lemma 20

> afaceeis an edge of P if e is a face and dim(e) = 1. A vertex is also an extreme point.

» aface F is a facet of P if F is a face and
dim(F) = dim(P) — 1.
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Observation
The feasible region of an LP is a Polyhedron.

Convex Sets

Theorem 21

If there exists an optimal solution to an LP (in standard form)
then there exists an optimum solution that is an extreme point.

Proof

> suppose Xx is optimal solution that is not extreme point

> there exists direction d = 0 such that x +d € P
» Ad =0 because A(x +d) =D

> Wlog. assume c’d > 0 (by taking either d or —d)
» Consider x + Ad, A >0
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Convex Sets

Case 1. [Jj s.t. d; < 0]
> increase A to A’ until first component of x + Ad hits 0
> x + A'd is feasible. Since A(x + A'd) =band x +A’'d = 0

» x + A’d has one more zero-component (d; = 0 for x;, = 0 as
x+deP)

> cTx' =cT(x+Ad) =cTx+AcTd=cTx

Case 2. [d; = O forall jand c'd > 0]

> x + Ad is feasible for all A = 0 since A(x + Ad) = b and
X+Ad=x2=>0

> as A — oo, cl(x +Ad) - w0 ascTd >0
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Algebraic View

beer b

An extreme point in R4 is uniquely de-
fined by d linearly independent equa-
tions.
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Notation
Suppose B < {1...n} is a set of column-indices. Define Ap as
the subset of columns of A indexed by B.

Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ap has linearly independent columns.
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Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.

Then x is extreme point iff Ag has linearly independent columns.

Proof (<)
> assume x is not extreme point
there exists direction d s.t. x +d € P
Ad =0 because A(x =d) =b
define B" = {j | d; # 0}
Ap’ has linearly dependent columns as Ad =0

dj=0forall jwithx;=0asx+d=0

vV V. v v Vv Y

Hence, B’ < B, Ap’ is sub-matrix of Ap
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Theorem 22
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
Then x is extreme point iff Ap has linearly independent columnes.

Proof (=)

» assume Ap has linearly dependent columns
there exists d + 0 such that Agd =0
extend d to R™ by adding 0-components
now, Ad = 0 and d; = 0 whenever x; = 0

for sufficiently small A we have x = Ad € P

vV V. v v VY

hence, x is not extreme point
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Theorem 23
LetP = {x | Ax = b,x = 0}. For x € P, define B = {j | x; > 0}.
If Ap has linearly independent columns then x is a vertex of P.

0O JjeB
-1 j¢B
thenc’x=0andc’y <OforyecP

> define cj = {

assume ¢’y = 0; then y; =0 forall j ¢ B
b =Ay = Apyp = Ax = Apxp gives that Ag(xp — yp) = 0;

vV v. v Y

this means that xp = yp since Ap has linearly independent
columns

> wegety=x

» hence, x is a vertex of P
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Observation
For an LP we can assume wlog. that the matrix A has full
row-rank. This means rank(A) = m.

» assume that rank(A) < m

> assume wlog. that the first row A; lies in the span of the
other rows A»,..., Ay; this means

Ay = 2:22 A; - Ay, for suitable A;

C1 if now by = X", A; - b; then for all x with A;x = b; we also
have A1 x = by; hence the first constraint is superfluous

C2 if by = >[", A; - b; then the LP is infeasible, since for all x
that fulfill constraints Ao, ..., A, we have

m m
Aix = Zi:Z Ai . AiX = Zi:2 Ai . bi * bl

From now on we will always assume that the
constraint matrix of a standard form LP has full
row rank.
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Theorem 24
Given P = {x | Ax = b,x = 0}. x is extreme point iff there exists
Bc {1,...,n} with |B| = m and

> Ap is non-singular

> xp=Az'b =0

» xy =0
where N = {1,...,n} \ B.
Proof

Take B = {j | x; > 0} and augment with linearly independent
columns until |B| = m; always possible since rank(A) = m.
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Basic Feasible Solutions

x € R" is called basic solution (Basislosung) if Ax = b and
rank(Ay) = |J| where J = {j | x; # 0};

x is a basic feasible solution (giltige Basislosung) if in addition
x = 0.

A basis (Basis) is an index set B < {1,...,n} with rank(Ag) = m
and |B| = m.

x € R™ with Agxp = b and x; = 0 for all j ¢ B is the basic
solution associated to basis B (die zu B assoziierte Basislosung)
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Basic Feasible Solutions

A BFS fulfills the m equality constraints.

In addition, at least n — m of the x;’s are zero. The
corresponding non-negativity constraint is fulfilled with equality.

Fact:
In a BFS at least n constraints are fulfilled with equality.

Basic Feasible Solutions

Definition 25

For a general LP (max{c’x | Ax < b}) with n variables a point x
is a basic feasible solution if x is feasible and there exist n
(linearly independent) constraints that are tight.
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Algebraic View

max 13a + 23b

{b, Sc, Sm} s.t. 5a+15b + s =480
(01401-120/01390) 4a+ 4b  +sp =160
35a + 20b + S, = 1190
(B, $hs S a, b, sc,Sn,Sm=0
(0132/032|550)
{a, b, sp}

{a, b, sm}
(12/28]0[0|210)

(19.41]25.53|0|-19.76/0)

beer

{a, b, sc}
(26/14/140/0/0)

{Sc, Shy Sm}
(0/0/480]160]1190)

ale {a, sc, sn} {a, sc, sm}
(34/0/30/24/0)  (40/0]280|0]-210)

Fundamental Questions

Linear Programming Problem (LP)
Let A € Q""" b e Q™ ce Q" x e Q. Does there exist
xeQ"st. Ax=b,x=0,cTx >a?

Questions:
» Is LP in NP? yes!
» |s LP in co-NP?

» |s LPin P?

Proof:
» Given a basis B we can compute the associated basis
solution by calculating Aglb in polynomial time; then we
can also compute the profit.
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Observation
We can compute an optimal solution to a linear program in time

O ((1’;) . poly(n,m)).

> there are only (,’;) different bases.

> compute the profit of each of them and take the maximum

What happens if LP is unbounded?
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