Efficient Algorithms and Data Structures II

Deadline: June 11, 2017, 10:15 am in the Efficient Algorithms folder.

Homework 1

Given an undirected graph $G=(V, E)$, a valid k-coloring is an assignment of its vertices to k colors such that the two endpoints of each edge receive distinct colors. The minimum vertex coloring problem is to find the minimum k such that G is k-colorable.

1. Give an algorithm for coloring G with $\Delta+1$ colors, where Δ is the maximum degree of a vertex in G.
2. Give an algorithm for coloring a 3-colorable graph with $\mathcal{O}(\sqrt{n})$ colors.

Homework 2

1. Prove that any vertex point of the LP

$$
\begin{array}{lrl}
\min . & \sum_{v \in V} x_{v} & \\
\text { s.t. } & x_{u}+x_{v} & \geq 1 \quad\{u, v\} \in E \\
& x_{v} & \geq 0 \quad v \in V .
\end{array}
$$

has the property that $x_{v} \in\{0,1 / 2,1\}$ for all $v \in V$.
2. Give a $\frac{3}{2}$-approximation algorithm for the vertex cover problem when the input graph is planar. Use the facts that we can find an optimal "vertex" point in polynomial time and there is a polynomial time algorithm to 4 -color any planar graph.

Homework 3

In the directed Steiner tree problem, we are given as input a directed graph $G=(V, E)$, nonnegative costs $c_{i j} \geq 0$ for edges $(i, j) \in E$, a root vertex $r \in V$, and a set of terminals $T \subseteq V$. The goal is to find a minimum-cost tree such that for each $i \in T$ there exists a directed path from r to i.
Prove that for some constant c there can be no $c \log |T|$-approximation algorithm for the directed Steiner tree problem, unless $P=N P$.
Hint: Use a reduction from the Set Cover Problem.

Tutorial Exercise 1

In the uncapacitated facility location problem, we have a set of clients D and a set of facilities F. For each client $j \in D$ and facility $i \in F$, there is a cost $c_{i j}$ of assigning client j to facility i. Furthermore, there is a cost f_{i} associated with each facility $i \in F$. The goal of the problem is to choose a subset of facilities $F^{\prime} \subseteq F$ so as to minimize the total cost of the facilities in F^{\prime} and the cost of assigning each client $j \in D$ to the nearest facility in F^{\prime}. In other words, we wish to find F^{\prime} so as to minimize $\sum_{i \in F^{\prime}} f_{i}+\sum_{j \in D} \min _{i \in F^{\prime}} c_{i j}$.

1. Show that there exists some c such that there is no $(c \ln |D|)$-approximation algorithm for the uncapacitated facility location problem unless $\mathrm{P}=\mathrm{NP}$.
2. Give an $\mathcal{O}(\ln |D|)$-approximation algorithm for the uncapacitated facility location problem.
