
10 – Greedy Algorithms

2

Greedy algorithms

1. Introduction

2. Basic examples

• The coin-changing problem

• The Traveling Salesman Problem

3. Scheduling problems

• Interval scheduling

• Scheduling to minimize lateness

4. Discussion: Shortest paths and minimum spanning trees

WS 2018/19 © S. Albers

3WS 2018/19

Greedy algorithms for optimization problems

In each step make the choice that

looks best at the moment!

Depending on the problem, the outcome can be:

1. The computed solution is always optimal.

2. The computed solution may not be optimal, but it

never differs much from the optimum.

3. The computed solution can be arbitrarily bad.

© S. Albers

4WS 2018/19

Basic example: Coin-changing problem

Denominations of coins and banknotes (in €):

500, 200, 100, 50, 20, 10, 5, 2, 1

Observation

Any amount in € can be paid using coins and banknotes of these

denominations.

Goal

Pay an amount n using the smallest number of coins and banknotes

possible.

© S. Albers

5WS 2018/19

Coin-changing problem

Greedy algorithm

Repeatedly choose coin/banknote of the largest

feasible denomination until the desired amount n

is paid.

Example: n = 487

500 200 100 50 20 10 5 2 1

© S. Albers

6WS 2018/19

Coin-changing problem: formal description

Coin denominations of coins: n1, n2, …, nk

n1 > n2 > … > nk and nk = 1

Greedy algorithm

1. w := n;

2. for i=1 to k do

3. Pay 𝑚𝑖 := 𝑤/𝑛𝑖 coins of denomination 𝑛𝑖;

4. 𝑤 := 𝑤 - 𝑚𝑖 ∙ 𝑛𝑖;

5. endfor;

© S. Albers

7WS 2018/19

Country ‘Absurdia’

Three denominations:

n3 = 1, n2 > 1 arbitrary, n1 = 2n2 + 1

Example: 41, 20, 1

Amount to pay: n = 3n2 (i.e. n = 60)

Optimal method of payment: 3 x n2

Greedy method: 1 x n1 + (n2-1) x n3

© S. Albers

8WS 2018/19

The Traveling Salesman Problem (TSP)

Given: n cities, costs c(i,j) to travel from city i to city j

Goal: Find a cheapest round-trip route that visits each city

exactly once and then returns to the starting city.

Formally: Find a permutation p of {1, 2, ..., n} such that

c(p(1),p(2)) + … + c(p(n-1),p(n)) + c(p(n),p(1))

is minimzed.

© S. Albers

9WS 2018/19

The Traveling Salesman Problem (TSP)

A greedy algorithm for solving TSP

Starting from city 1, each time go to the nearest city

not visited yet. Once all cities have been visited,

return to the starting city 1.

© S. Albers

10WS 2018/19

The Traveling Salesman Problem (TSP)

Example

c(i,i+1) = 1 for i = 1, ..., n - 1

c(n,1) = M for some large number M

c(i,j) = 2 otherwise

Optimal tour:

Solution of the greedy algorithm:

1 2 3 n–2 n–1 n

1 2 3 n–2 n–1 n

Cost = n+2

Cost = n-1+ M

© S. Albers

11WS 2018/19

Interval scheduling

Problem:

Set S = {1,…,n} of n requests for a resource, e.g. a lecture hall.

Request i: [s(i), f(i)) s(i) = start time f(i) = finish time

Subset of requests is compatible if no two of them overlap in time.

Goal: Select a maximum-size compatible subset of requests.

Greedy 1: Always select an available request that starts earliest, i.e. having

minimal start time s(i).

© S. Albers

12WS 2018/19

Interval scheduling

Greedy 2: Always select an available request that requires the shortest interval

in time, i.e. for which f(i) - s(i) is as small as possible.

Greedy 3: Always select an available request that has the smallest number of

non-compatible requests (interval with the fewest conflicts).

© S. Albers

13WS 2018/19

Always choose the request with the earliest finish time

that is compatible with all previously selected requests!

In particular, the request chosen first is the one with

the earliest finish time.

Theorem

Greedy* constructs an optimal solution.

Assumption:

Requests are sorted in non-decreasing order of finish time:

f(1)  f(2)  f(3)  ...  f(n)

Greedy*

© S. Albers

14WS 2018/19

Greedy*: Example

1

1

1

1

1

1

1

1

1

1

1

10

4

4

4

4

4

4

4

4

8

8

8

8

11

4

8

9

11

7

5

6

3

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

s(i) f(i)

1 1 4

2 3 5

3 0 6

4 5 7

5 3 8

6 5 9

7 6 10

8 8 11

9 8 12

10 2 13

11 12 14

15WS 2018/19

Greedy*

Input: n requests given by intervals [s(i), f(i)), 1  i  n, where f(i)  f(i+1)

Output: A maximum-size compatible subset of requests.

1. A := {1};

2. last := 1; /* last is the request added most recently */

3. for i = 2 to n do

4. if s(i)  f(last) then

5. A := A  {i};

6. last := i;

7. endif;

8. endfor;

9. return A;

Running time: O(n)

© S. Albers

16WS 2018/19

Analysis of Greedy*

Lemma: Set A is a compatible set of requests.

Proof: Requests are added to A in order of increasing finish times. A

request i added to A does not overlap with the last request added to

A, and hence with no request contained in A.

Let O be an optimal set of intervals.

We will prove |A| = |O|.

Specifically, we will compare a partial solution of Greedy* to an initial

segment of O, and show that Greedy* does at least as good.

Intuitively, Greedy* always „stays ahead“.

© S. Albers

17WS 2018/19

Analysis of Greedy*

Let A = {i1,…,ik}. Requests i1 < … < ik were added in this order.

Let O = {j1,…,jm}. Requests j1 < … < jm are compatible.

We will prove that k = m.

Intuition of Greedy*: Resource becomes available as soon as possible.

Lemma: For r = 1,…k, there holds f(ir) ≤ f(jr).

Proof: Induction on r.

r=1: Greedy selects request 1, which has the earliest finish time among

all requests.

Assume that the lemma holds for r-1. For the induction step we

consider integer r.

© S. Albers

18WS 2018/19

Analysis of Greedy*

There holds f(ir-1) ≤ f(jr-1).

Also f(jr-1) ≤ s(jr), which implies f(ir-1) ≤ s(jr), and Greedy* could have

added request jr to A.

The general situation is depicted in the figure below.

If ir ≠ jr, then f(ir) ≤ f(jr) because Greedy* considers requests in order of

non-decreasing finish times.

ir-1

jrjr-1

ir

© S. Albers

19WS 2018/19

Analysis of Greedy*

Theorem: Greedy* returns an optimal set A.

Proof: Suppose that A is not an optimal set. Then m > k.

Using the above lemma with r=k we get f(ik) ≤ f(jk).

Request jk+1 in O satisfies f(jk) ≤ s(jk+1) and thus f(ik) ≤ f(jk) ≤ s(jk+1).

Hence Greedy* would have added request jk+1 or some other request to

A.

Extensions:

Weighted problem: Request i has a value vi. Maximize the total value of

the selected requests.

Online setting: Requests arrive one by one. A scheduler has to

accept/reject requests without knowledge of any future requests.

© S. Albers

20WS 2018/19

Interval Partitioning Problem

Many identical resources are available. Schedule all the requests using

as few resources as possible.

Problem:

Set S = {1,…,n} of n requests. Pool of identical resources.

Request i: [s(i), f(i)) s(i) = start time f(i) = finish time.

Goal: Schedule all the requests feasibly so as to minimize the number

of required resources.

Applications:

 Schedule requests for a classroom using as few classrooms as

possible.

 Schedule jobs that need to be processed for a specific period of time

on a small set of machines.

 Route requests that need to be allocated bandwidth on a fiber-optic

cable.

© S. Albers

21WS 2018/19

Interval Partitioning: Example

a
a

a

b

b

c

c

d

d

e

e

f

f

g

g

h

h

i

i

j

j

© S. Albers

22WS 2018/19

Interval Partitioning Problem

Depth of a set of intervals: maximum number of intervals that pass over

any single point on the time-line.

Lemma: In any instance of Interval Partitioning, the number of

resources needed is a least the depth of the set of intervals.

Proof: Suppose that intervals I1,…,Id all pass over a common point on

the time-line. Then they must be scheduled on different resources.

 Does there exist a polynomial time algorithm for Interval

Partitioning?

 Is there always a schedule using a number of resources equal to the

depth?

© S. Albers

23WS 2018/19

Greedy

Let d be the depth of the set of intervals.

Process intervals in order of non-decreasing start times. Each interval

is assigned a label, where labels come of the set of numbers

{1,…,d}. Overlapping intervals are labeled with different numbers.

Each number can be interpreted as the name of a resource. The label

of an interval indicates to which resource the interval is assigned.

© S. Albers

24WS 2018/19

Greedy

Input: n requests/intervals Ii = [s(i), f(i)), 1  i  n, where s(i)  s(i+1)

Output: A labeling of the intervals with numbers from {1,2,…,d}. Overlapping

intervals are labeled with different numbers.

1. for i = 1 to n do

2. L := {1,…,d};

3. for j = 1 to i-1 do

4. if Ij overlaps with Ii then

5. Remove the label of Ij from L;

6. endif;

7. endfor;

8. if L ≠  then

9. Assign to Ii any label from L;

10. else

11. Leave Ii unlabeled;

12. endif;

13. endfor;

Running time: O(n2)

© S. Albers

25WS 2018/19

Analysis

Lemma: The Greedy algorithm assigns to every interval a label. No two

overlapping interals receive the same label.

Proof: We first argue that each interval is assigned a label.

Consider interval Ii and suppose that there exist exactly t intervals

among I1,…Ii-1 that overlap with Ii. These t intervals, together with Ii,

pass over a common point on the time-line. Hence t+1 ≤ d, and

t ≤ d-1. Therefore, in line 8 of Greedy, L is non-empty.

Line 5 ensures that overlapping intevals do not receive the same label.

Theorem: Greedy schedules every interval on a resource, using a

number of resources equal to the depth of the set of intervals. This

is the optimal number of resources needed.

© S. Albers

26WS 2018/19

Scheduling to minimize lateness

Schedule n requests/jobs on a single resource so as to minimize the

maximum lateness.

Problem:

n jobs J1,..,Jn that are available at a common start time s=0.

Job Ji has a length ti and a deadline di, 1 ≤ i ≤ n.

1 resource.

Job Ji must be assigned an interval [s(i),f(i)) with f(i) = s(i) + ti.

Lateness of Ji is li = max{0, f(i) - di}.

Different jobs must be assigned non-overlapping intervals.

Goal: Construct a schedule that minimizes L = max1≤i≤n li.

© S. Albers

27WS 2018/19

Example

J1

done at time 1

J1

Schedule

J2

J3

t1=1

t2=2

t3=3

J2

done at time 1+2=3

J3

done at time 1+2+3=6

d2=4

d1=2

d3=6

© S. Albers

28WS 2018/19

Greedy algorithms

Greedy 1: Schedule jobs in order of increasing length.

Not optimal. J1: t1=1 d1=100 J2: t2=10 d2=10

Greedy 2: Schedule jobs in order of increasing slack time di - ti.

Not optimal. J1: t1=1 d1=2 J2: t2=10 d2=10

Earliest Deadline First (EDF): Schedule jobs in order of increasing

deadlines.

1. Sort/number the jobs J1,…,Jn such that d1 ≤ … ≤ dn.

2. f := 0;

3. for i = 1 to n do

4. Assign Ji to the time interval from s(i) := f to f(i) := f + ti;

5. f := f + ti;

6. endfor;

© S. Albers

29WS 2018/19

Analysis EDF

Idle time: Gap time in the schedule when the machine is not working,

yet there are jobs left.

EDF constructs a schedule with no idle time.

Observation: There exists an optimal schedule with no idle time.

A = schedule constructed by EDF

O = optimal schedule

Idea: Repeatedly modify O so that it is eventually identical to A. In each

step optimality is preserved.

Inversion in a schedule: Pair of jobs Ji and Ji such that Ji is scheduled

before Jj but dj < di.

© S. Albers

30WS 2018/19

Analysis EDF

Lemma 1: All schedules with no inversions and no idle time have the

same maximum lateness.

Proof: Let S and S‘ be two different schedules that have neither

inversions nor idle time. The schedules only differ in the order in

which jobs with identical deadlines are scheduled.

Consider jobs with a common deadline d. They are scheduled

consecutively after all jobs with earlier deadlines and before all jobs

with later deadlines.

Among the jobs with deadline d, the one scheduled last has the

greatest lateness. This lateness does not depend on the order of the

jobs.

jobs with smallest

deadline
jobs with second smallest

deadline

jobs with largest

deadline

S S’:

© S. Albers

31WS 2018/19

Analysis EDF

Lemma 2: There exists an optimal schedule that has no inversions and

no idle time.

Proof: By the above observation there exists an optimal schedule O

with no idle time.

Statement (a): If O has an inversion, then there exist two jobs Jj and Jk

such that Jk is scheduled immediately after Jj and dk < dj.

For the proof of the statement, consider an inversion where job Ja is

scheduled sometime before Jb and db < da. In the schedule, starting

at Ja traverse the subsequent jobs until reaching a point where the

deadline encountered decreases for the first time.

Now suppose that O has at least one inversion and let Jj and Jk be two

jobs as specified in Statement (a). Swap the two jobs and let O‘ be

the new schedule. We argue that the maximum lateness does not

increase.

© S. Albers

32WS 2018/19

Analysis EDF

Obviously, only the lateness of Jj can increase. The new lateness 𝑙𝑗
′

satisfies 𝑙𝑗
′ = max 0, 𝑓 𝑘 − 𝑑𝑗 ≤ max 0, 𝑓 𝑘 − 𝑑𝑘 = 𝑙𝑘 ≤ 𝐿, where

𝑙𝑘 denotes the lateness of Jk in O and L is the maximum lateness of

this former schedule.

Thus the swap perserves optimality of the schedule. After at most
𝑛
2

swaps we obtain a schedule with the properties of the lemma.

dk dj

Jj

Jk

Jk

Jj
Before swapping

After swapping

© S. Albers

33WS 2018/19

Analysis EDF

Theorem: The schedule constructed by EDF has an optimal maximum

lateness.

Proof: By Lemma 2 there exists an optimal schedule that has no

inversions and no idle time. By Lemma 1 all schedules with these

two properties have the same maximum lateness. Hence the

schedule by EDF is optimal.

Extension: Assume that each job Ji, additonally, has a release time ri.

The analysis of EDF crucially uses of the fact that all jobs are

available at a common start time.

© S. Albers

34WS 2018/19

Discussion: Shortest-paths problem

Directed graph G = (V, E)

Cost function c : E  ℝ

1

3

2
4

6

5

-1

2

4

3

2

-6

3

© S. Albers

35WS 2018/19

Distance between two vertices

Cost/length of a path P = v0, v1, ... , vl from u to v :

Distance between u and v (not always defined):

dist(u,v) = inf { c(P) | P is a path from u to v }

),()(1

1

0







 i

l

i

i vvcPc

© S. Albers

36WS 2018/19

Example

1

3

2
4

6

5

-1

2

4

3

2

-6

3

dist(1,2) = -1

dist(1,3) = 2

dist(3,1) = 

dist(3,4) = -

© S. Albers

37WS 2018/19

Single-source shortest paths problem

Input: Network G = (V, E, c), c : E  ℝ, vertex s

Output: dist(s,v) for all v  V

Observation: The function dist satisfies the triangle inequality.

For any edge (u,v)  E:

dist(s,v)  dist(s,u) + c(u,v)

u

v

s

P

P’

P = shortest path from s to v

P’ = shortest path from s to u

© S. Albers

38WS 2018/19

Greedy approach to an algorithm

1. Overestimate the function dist

2. While there exists an edge e = (u,v) with

dist(s,v) > dist(s,u) + c(u,v)

set dist(s,v)  dist(s,u) + c(u,v)










sv

sv
vsdist

 if

 if0
),(

© S. Albers

39WS 2018/19

Generic algorithm

1. DIST[s]  0;

2. for all v  V \ {s} do DIST[v]  endfor;

3. while  e = (u,v)  E with DIST[v] > DIST[u] + c(u,v) do

4. Choose such an edge e = (u,v);

5. DIST[v]  DIST[u] + c(u,v);

6. endwhile;

Questions:

1. How can we efficiently check in line 3 if the triangle inequality is
violated?

2. Which edge shall we choose in line 4?

© S. Albers

40WS 2018/19

Solution

Maintain a set U of all those vertices that might have an outgoing edge

violating the triangle inequality.

- Initialize U = {s}

- Add vertex v to U whenever DIST[v] decreases.

1. Check if the triangle inequality is violated: U   ?

2. Choose a vertex from U and restore the triangle inequality for all

outgoing edges (edge relaxation).

© S. Albers

41WS 2018/19

Refined Greedy algorithm

1. DIST[s]  0;

2. for all v  V \ {s} do DIST[v]  endfor;

3. U  {s};

4. while U   do

5. Choose a vertex u  U and delete it from U;

6. for all e = (u,v)  E do

7. if DIST[v] > DIST[u] + c(u,v) then

8. DIST[v]  DIST[u] + c(u,v);

9. U  U  {v};

10. endif;

11. endfor;

12. endwhile;

© S. Albers

42WS 2018/19

Efficient implementations

 Non-negative networks (only non-negative edge costs)

U is a priority queue. Dijkstra‘s algorithm. O(m + n log n)

 Networks without negative-cost cycles

U is a queue. Bellman-Ford algorithm. O(n·m)

 Acyclic networks

U is a topological sorting of V. O(n + m)

n = |V| m = |E|

© S. Albers

43WS 2018/19

Discussion: Minimum spanning trees

G = (V, E) undirected graph w: E  R weight function

Minimum spanning tree: Tree T  E (connected, acyclic subgraph)

that connects all vertices in V and whose total weight w(T) is

minimum.





Tvu

vuwTw
),(

),()(

4

8

-3

9

8

15

-5

6

a

ec

b d

f

© S. Albers

44WS 2018/19

Greedy algorithms

 Kruskal‘s algorithm: Grow a forest. Initially each tree consists of a

single vertex. In each step add a minimum-weight edge that

connects different trees.

 Prim‘s algorithm: Grow a single tree. In each step add a minimum-

weight edge maintaining the tree structure.

© S. Albers

