
15 – Complexity

PSPACE - A Complexity Class

Beyond NP

Extending the Limits of Tractability

2WS 2018/19

1. Computational resources

 Time:

Complexity classes P and NP

 Space: Memory requirements of an algorithm

An algorithm can reuse memory cells. Hence some complex

problems can be solved using small space requirements.

© S. Albers

3WS 2018/19

Complexity classes

 P: An algorithmic problem belongs to the complexity class P of

polynomially solvable problems if it can be solved by an algorithm

with polynomial worst-case running time.

 NP: A decision problem Π belongs to the class NP (nondeterministic

polynomial time) if there is a nondeterministic algorithm with

polynomially bounded worst-case running time that accepts every

x ∈ Π along at least one computation path, and rejects every x ∉ Π
along every computation path.

Polynomial running time: Polynomial in the size / encoding length of the

input.

© S. Albers

4WS 2018/19

PSPACE

 PSPACE: An problem belongs to the class PSPACE if it can be

solved by an algorithm with a polynomial worst-case amount of

space.

Proposition: P ⊆ PSPACE

Proof: In polynomial time an algorithm can only consume a polynomial

amount of space.

© S. Albers

5WS 2018/19

Example

Algorithm that counts from 0 to 2n-1 in base-2 notation, using an n-bit

counter.

Input length: n

Running time: 2n

Space: n

© S. Albers

6WS 2018/19

Satisfiability

SAT: Boolean variables 𝑥1, … , 𝑥𝑛with literals {𝑥1, … , 𝑥𝑛 , ҧ𝑥1, … , ҧ𝑥𝑛}. A

clause C = 𝑙1 ∨ … ∨ 𝑙𝑘 is a disjunction of literals. Given a formula

Φ = C1 ∧ … ∧ Cm,

does there exist an assignment of the Boolean variables (truth assign-

ment) satisfying Φ?

3-SAT: Each clause has length three.

Example: Φ(𝑥1, 𝑥2, 𝑥3) =

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ ҧ𝑥3) ∧ (ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (ҧ𝑥1 ∨ ҧ𝑥2 ∨ ҧ𝑥3)

© S. Albers

7WS 2018/19

Satisfiability

Proposition: 3-SAT ∈ PSPACE.

Proof: Consider the brute-force algorithm that tries all the possible 2n

truth assignments.

Increment a binary n-bit counter from 0 to 2n-1.

In each iteration the counter value 𝑥1, … , 𝑥𝑛 represents the values of the

Boolean variables. Using polynomial space the algorithm can plug the

values into the clauses and check if the formula is satisfied.

If so, the algorithm stops. Otherwise it erases the work space and

moves on to the next truth assignment.

© S. Albers

8WS 2018/19

NP and PSPACE

Polynomial reduction ≤p: Decision problem A is polynomial time

reducible to decision problem B (i.e. A ≤p B) if there is a polynomial-time

computable function f mapping instances of A to instance of B such

that, for all I,

I ∈ A ⟺ f(I) ∈ B.

Theorem: NP ⊆ PSPACE

Proof: 3-SAT is NP-complete and thus Π ≤p 3-SAT, for every problem

Π ∈ NP. Hence in polynomial time and space, every input I for Π can be

transformed into an input f(I) for 3-SAT such that I ∈ Π holds if and only

if f(I) ∈ 3-SAT. Input f(I) can be decided using a polynomial amount of

space, by the above proposition.

© S. Albers

9WS 2018/19

Landscape

PSPACE

NP

P

© S. Albers

10WS 2018/19

Hard problems in PSPACE

Quantification

QSAT (Quantified SAT): Boolean variables 𝑥1, … , 𝑥𝑛with literals

{𝑥1, … , 𝑥𝑛 , ҧ𝑥1, … , ҧ𝑥𝑛}. Does

Q1𝑥1Q2𝑥2…Q𝑛𝑥𝑛 Φ(𝑥1, … , 𝑥𝑛)

hold? Here each Qi is ∃ or ∀, for 1≤ i ≤ n, and Φ(𝑥1, … , 𝑥𝑛) is a 3-SAT

formula.

Example: ∃𝑥1∀𝑥2∃𝑥3 Φ(𝑥1, 𝑥2, 𝑥3)

where Φ(𝑥1, 𝑥2, 𝑥3) =

(𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ ҧ𝑥3) ∧ (ҧ𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (ҧ𝑥1 ∨ ҧ𝑥2 ∨ ҧ𝑥3)

𝑥1 = 1 𝑥2 = 1 𝑥3 = 0

𝑥1 = 1 𝑥2 = 0 𝑥3 = 1

© S. Albers

11WS 2018/19

Quantification

May assume that the quantifiers ∃ and ∀ alternate. Otherwise we add

dummy variables.

… ∃𝑥𝑖 ∃𝑥𝑖+1… Φ(𝑥1, … , 𝑥𝑛) holds iff … ∃𝑥𝑖 ∀𝑦𝑖 ∃𝑥𝑖+1… Φ(𝑥1, … , 𝑥𝑛)

… ∀𝑥𝑖 ∀𝑥𝑖+1… Φ(𝑥1, … , 𝑥𝑛) holds iff … ∀𝑥𝑖 ∃𝑦𝑖 ∀𝑥𝑖+1… Φ(𝑥1, … , 𝑥𝑛)

© S. Albers

12WS 2018/19

An algorithm for QSAT

If the first quantifier is ∃𝑥1, then sequentially consider two cases.

 𝑥1= 0: Recursively check whether the remaining quantified

expression evaluates to 1.

 𝑥1= 1: Recursively check whether the remaining quantified

expression evaluates to 1.

Expression evaluates to 1 if one of the recursive calls evaluates to 1.

A quantifier ∀𝑥1 can be handled analogously but both recursive calls

must evaluate to 1.

If we were to safe all the work in the recursive calls, then the space

usage S(n) would be S(n) = 2∙S(n-1) + p(n), for some polynomial

function p(n). This would result in an exponential bound.

© S. Albers

13WS 2018/19

Pseudocode

Algorithm QSAT

1. if next quantifier is ∃𝑥𝑖 then

2. xi := 0; recursively evaluate the quantified expression over the remaining

variables; save the result (0 or 1) and delete all intermediate work;

3. xi := 1; recursively evaluate the quantified expression over the remaining

variables; save the result (0 or 1) and delete all intermediate work;

4. if either outcome yielded 1 then return 1 else return 0 endif;

5. else if next quantifier is ∀𝑥𝑖 then

6. xi := 0; recursively evaluate the quantified expression over the remaining

variables; save the result (0 or 1) and delete all intermediate work;

7. xi := 1; recursively evaluate the quantified expression over the remaining

variables; save the result (0 or 1) and delete all intermediate work;

8. if both outcomes yielded 1 then return 1 else return 0 endif;

9. endif;

© S. Albers

14WS 2018/19

Analysis

S(n) = space requirement on an n-variable problem

There holds

S(n) ≤ S(n-1) + p(n),

for some polynomial function p(n).

Hence S(n) ≤ p(n) + p(n-1) + p(n-2) + … + p(1) ≤ n∙p(n).

Theorem: QSAT ∈ PSPACE.

© S. Albers

15WS 2018/19

PSPACE-completeness

Definition: A problem Π is PSPACE-complete if (a) Π is in PSPACE

and (b) Π′ ≤p Π, for every problem Π′ in PSPACE.

Theorem: QSAT is PSPACE-complete.

Proof: (Sketch) We need to show Π ≤p QSAT, for every Π ∈ PSPACE.

The proof is similar to that of Cook‘s theorem. For Π, there exists a

Turing machine M that decides Π using a polynomial amount of

space.

Suppose that an input I ∈ {0,1}n can be decided using space p(n), for

some polynomial function p. In polynomial time one can construct a

quantified Boolean formula of size O(p(n)2) that is true if and only if

M accepts I.

© S. Albers

16WS 2018/19

Games

A large number of two-player games, such as chess, naturally fit into

the following framework. Players alternate moves, and the first one

to achieve a specfic goal wins.

Problem Competitive Facility Location: G=(V,E) undirected graph.

Vertex vi has a non-negative real value bi. Non-negative bound B.

Two players alternately select vertices so that the selected vertices

always form an independent set.

Player 2 wins if he can select a set of vertices of total value at least B.

Otherwise Player 1 wins.

Can Player 1 (or Player 2) force a win?

© S. Albers

17WS 2018/19

Application

Two companies, JavaPlanet and Queen‘s Coffee, operating café

franchises across the country, compete for market share in a

geographic region.

The region is divided into n zones labeled 1,2,…,n. Each zone i has a

value bi, representing the revenue if a company opens a franchise

there. Local zoning laws require that a pair (i,j) of adjacent zones

must not each contain a franchise. This can be modeled by a

conflict graph G=(V,E).

The two companies/players take turn in selecting zones. Can Player 2

select zones of total value at least B?

10 1 10155 5 1 5 1 15

B= 20? B= 25?

© S. Albers

18WS 2018/19

Analysis

Theorem: Competitive Facility Location ∈ PSPACE.

Proof: Similar to the proof that QSAT ∈ PSPACE.

Consider the alternate moves of the two players.

Player 1: Check all possible moves. For each one, determine if it

results in a forced win for Player 1 in the resulting game. Player 1

has a forced win in the current position if each of the moves yields a

forced win.

Player 2: Check all possible moves. For each one, determine if it

results in a forced win for Player 2 in the resulting game. Player 2

has a forced win in the current position if at least one of the moves

yields a forced win.

In each case, a single bit suffices to store the result.

© S. Albers

19WS 2018/19

Analysis

S(n) = space requirement on a graph with n vertices

There holds

S(n) ≤ S(n-1) + p(n),

for some polynomial function p(n).

© S. Albers

20WS 2018/19

Planning

Fundamental problem in Artificial Intelligence.

Arises in disaster-relief efforts, military operations and solitaire puzzles,

such as Rubic‘s Cube or the Fifteen Puzzle.

Given an initial state, is it possible to apply a sequence of operations so

as to reach a desired final state.

© S. Albers

21WS 2018/19

Definition of the Planning problem

 Conditions C = {c1,…,cn}

A configuration is specified by a subset of the conditions.

 Operators O = {o1,…,ok}

Each operator oi has

prerequisite list pi: conditions that must hold for oi to be invoked

add list ai: conditions that become true after oi is invoked

delete list di: conditions that cease to hold after oi is invoked.

Given a set C0 of initial conditions and a set of goal conditions C*, is it

possible to apply a sequence of operators so as to reach C* from C0?

© S. Albers

22WS 2018/19

Graph representation

G=(V,E)

V: Vertex for each of the 2n possible configurations

E: There is a directed edge from 𝐶′ to 𝐶′′ if in one step one of the

operators converts 𝐶′ to 𝐶′′, for any two configurations 𝐶′ and 𝐶′′.

Does there exists a path from C0 to C*?

© S. Albers

23WS 2018/19

Worst-case instances

Lemma: There are instances of the Planning Problem with n conditions

and k operators for which there exists a solutions but the shortest

one has length 2n-1.

Proof:

 Conditions c1,…,cn.

 Operators o1,…,on.

 o1 has no prerequisite or delete list. It adds c1.

 oi, where i>1, requires cj for all j<i as prerequisite.

It adds ci and deletes all cj, for all j<i.

C0 = ∅ C* = {c1,…,cn}

© S. Albers

24WS 2018/19

Worst-case instances

Claim: For any configuration that does not contain cj, for all j≤i, there

exists a sequence of operators that reaches a configuration containing

cj, for all j≤i, but any such sequence has at least 2i-1 steps.

Proof: By induction on i. The claim holds for i=1. Consider i>1.

Existence of a solution:

 Achieve {c1,…,ci-1}, using o1,…,oi-1.

 Invoke oi, adding ci but deleting everything else.

 Achieve again {c1,…,ci-1}, using o1,…,oi-1. This preserves ci.

© S. Albers

25WS 2018/19

Worst-case instances

Lower bound on the number of steps.

Consider the first moment ci is added. At that time c1,…,ci-1 must be

present. This requires at least 2i-1-1 steps. Operator oi is invoked, which

takes one step and erases c1,…ci-1. At least 2i-1-1 further steps are

needed to restore c1,…,ci-1.

The lemma follows by applying the claim for i=n.

© S. Albers

26WS 2018/19

Worst-case instances

By the above lemma, depth-first and breadth-first search cannot be

used to find a solution using a polynomial amount of space.

Lemma: If a Planning instance with n conditions has a solution, then it

has one using at most 2n-1 steps.

© S. Albers

27WS 2018/19

Space-efficient path construction

We present a path finding algorithm, based on an idea proposed

Savitch in1970.

Procedure Path(C1,C2,L): It determines whether there is a sequence of

operators, consisting of at most L steps, that leads from configuration

C1 to configuration C2.

Generate all possible midpoints C‘ and check recursively whether

one can get from C1 to C‘ in L/2 steps and from C‘ to C2 in L/2 steps.

This involves two recursive calls. Only the outcome yes/no matters so

that we can reuse space.

© S. Albers

28WS 2018/19

Pseudocode

Algorithm Path(C1,C2,L)

1. if L = 1 then

2. if there is an operator converting C1 to C2 then

3. return „yes“;

4. else return „no“;

5. endif;

6. else

7. Enumerate all configurations C‘ using an n-bit counter;

8. for each C‘ do

9. x := Path(C1,C‘, 𝐿/2); Delete all intermediate work, saving only x;

10. y := Path(C‘,C2, 𝐿/2); Delete all intermediate work, saving only y;

11. if x and y are both „yes“ then return „yes“; endif;

12. endfor;

13. if „yes“ was not returned for any C‘ then return „no“; endif;

14. endif;

© S. Albers

29WS 2018/19

Space-efficient path construction

Lemma: Path(C1,C2,L) returns „yes“ if and only if there is a sequence

of operators of length at most L leading from C1 to C2 . The space

requirement is polynomial in n, k and log L.

Proof: The correctness follows by induction on L.

L=1: All operators can be checked explicitly.

L>1: If there is a sequence of operators from C1 to C2 of length L‘ ≤ L,

then there exists a configuration C‘ that occurs at position 𝐿′/2 in this

sequence. By induction Path(C1,C‘, 𝐿/2) and Path(C‘,C2, 𝐿/2) both

return „yes“ so that Path(C1,C2,L) also returns „yes“.

Conversely, if Path(C1,C2,L) returns „yes“, then there exists a

configuration C‘ so that Path(C1,C‘, 𝐿/2) and Path(C‘,C2, 𝐿/2) both

return „yes“. By induction hypothesis the exist corresponding

sequences from C1 to C‘ and from C‘ to C2. Their concatenation gives a

sequence from C1 to C2 of length at most L.

© S. Albers

30WS 2018/19

Space-efficient path construction

We next analyze the space requirements. In addition to the space

needed inside a recursive call, each invocation of the procedure Path

uses an amount of space that is polynomial in n, k and log L.

Hence the space requirements S(n, k, L) satisfies

S(n, k, 1) ≤ p(n, k, 1)

S(n, k, L) ≤ S(n, k, 𝐿/2) + p(n, k, log L)

for some polynomial function p.

This yields S(n, k, L) = O(log L ∙ p(n, k, log L)).

Theorem: Planning ∈ PSPACE.

© S. Albers

31WS 2018/19

Competitive Facility Location

Problem: G=(V,E) undirected graph. Vertex vi has a non-negative real

value bi. Non-negative bound B. Two players alternately select

vertices so that the selected vertices always form an independent

set.

Player 2 wins if he can select a set of vertices of total value at least B.

Otherwise Player 1 wins.

Can Player 1 force a win?

© S. Albers

32WS 2018/19

Proving problems PSPACE-complete

Theorem: Competitive Facility Location is PSPACE-complete.

Proof: We will show QSAT ≤p Competitive Facility Location.

We are given an instance ∃𝑥1∀𝑥2…∀𝑥𝑛−1∃𝑥𝑛Φ(𝑥1, … , 𝑥𝑛) of QSAT. For

simplicity we assume that n is odd. The formula is a conjunction of

clauses C1 ∧ … ∧ Ck, where each Cj can be written as

Cj = 𝑙𝑗1 ∨ 𝑙𝑗2 ∨ 𝑙𝑗3.

Moreover, we assume that no clause contains a variable and its

negation.

Given ∃𝑥1∀𝑥2…∀𝑥𝑛−1∃𝑥𝑛Φ(𝑥1, … , 𝑥𝑛), we define a graph G for

Competitive Facility Location. In QSAT the variables 𝑥1, … , 𝑥𝑛 are set in

this order. Competitive Facility Location is more general in that players

may select arbitrary vertices as long as they form an independent set.

We will fix this by assigning specific values to the vertices.

© S. Albers

33WS 2018/19

Proving problems PSPACE-complete

Graph construction: For each variable 𝑥𝑖, we introduce two vertices 𝑣𝑖
and 𝑣𝑖

′, representing literals 𝑥𝑖 and ҧ𝑥𝑖, respectively. The two vertices are

connected by an edge {𝑣𝑖,𝑣𝑖
′}.

Selecting 𝑣𝑖 corresponds to 𝑥𝑖= 1. Selecting 𝑣𝑖
′ corresponds to 𝑥𝑖= 0.

In order to ensure that vertices are picked in increasing order of index, a

high value is assigned to 𝑣1 and 𝑣1
′ . Player 1 will lose instantly if he does

not select any of the two vertices. A smaller value is assigned to 𝑣2 and

𝑣2
′ , and so on.

Let c > 2 be a constant. The b-values of 𝑣𝑖 and 𝑣𝑖
′ are equal to c1+n-i. The

bound to be achieved by Player 2 is

B = cn-1 + cn-3+ …+ c2 + 1.

For each clause Cj we introduce a vertex wj that is connected to those

literals contained in that clause and has value 1.

© S. Albers

34WS 2018/19

Proving problems PSPACE-complete

1000 1000

100 100

10 10

1

Variable 1

Variable 2

Variable 3

Clause 1

B=101

© S. Albers

35WS 2018/19

Proving problems PSPACE-complete

Suppose that during the first i-1 rounds, the players alternately chose

vertices in increasing order of index. Assume that in round i, the

corresponding player does not select a vertex from among 𝑣𝑖 and 𝑣𝑖
′.

i odd: Player 2 wins instantly in the next round by picking either 𝑣𝑖 or 𝑣𝑖
′

because c1+n-i > cn-i+ …+ c2 + 1.

i even: Player 1 wins instantly in the next round by picking either 𝑣𝑖 or 𝑣𝑖
′

because the remaining value that can be collected by Player 2 is

at most cn-i+ …+ c2 + 1 < c1+n-i.

We prove that ∃𝑥1∀𝑥2…∀𝑥𝑛−1∃𝑥𝑛Φ(𝑥1, … , 𝑥𝑛) holds if and only if Player 1

has a forced win.

© S. Albers

36WS 2018/19

Proving problems PSPACE-complete

First assume that ∃𝑥1∀𝑥2…∀𝑥𝑛−1∃𝑥𝑛Φ(𝑥1, … , 𝑥𝑛) holds. Consider any of

the rounds i where Player 1 moves. If in the previous round, for the first

time, Player 2 has not selected either 𝑣𝑖−1 or 𝑣𝑖−1
′ , then Player 1 wins

instantly.

Otherwise Player 1 inspects ∃𝑥1∀𝑥2…∀𝑥𝑛−1∃𝑥𝑛Φ(𝑥1, … , 𝑥𝑛) with the prior

setting of 𝑥1, … , 𝑥𝑖−1; the choice of 𝑣𝑗, for any j < i, corresponds to 𝑥𝑗=1.

Player 1 selects 𝑣𝑖 if 𝑥𝑖 = 1 and 𝑣𝑖
′ otherwise.

In each clause of Φ(𝑥1, … , 𝑥𝑛) at least one literal gives true and a

corresponding vertex has been selected. Hence after n rounds Player 2

cannot select any of the clause vertices wj and its total value is

cn-1 + cn-3+ …+ c2 = B-1. Thus Player 1 has a forced win.

© S. Albers

37WS 2018/19

Proving problems PSPACE-complete

Next assume that ∃𝑥1∀𝑥2…∀𝑥𝑛−1∃𝑥𝑛Φ(𝑥1, … , 𝑥𝑛) does not hold.

Then ∀𝑥1∃𝑥2…∃𝑥𝑛−1∀𝑥𝑛 formula Φ(𝑥1, … , 𝑥𝑛) is not satisfied.

Now consider any of the rounds i where Player 2 moves. As above,

Player 2 wins instantly or he selects 𝑣𝑖 if 𝑥𝑖 = 1 and 𝑣𝑖
′ otherwise. In

Φ(𝑥1, … , 𝑥𝑛) at least one clause Cj is not satisfied and Player 2 can select

that clause vertex wj, earning a total value of B.

Hence Player 2 has a forced with, and Player 1 cannot force a win.

© S. Albers

38WS 2018/19

Extending the limits of tractability

 Develop algorithms for NP-complete decision problems / NP-hard

optimization problems with a reasonable efficiency.

 Fixed-Parameter Algorithms: Running time is exponential in a fixed

problem parameter but polynomial otherwise.

The hope is that, for typical input instances, the chosen parameter

takes small values. The algorithms exploit special structures of the

given problem.

© S. Albers

39WS 2018/19

Vertex Cover

Problem Vertex Cover: Graph G=(V,E) and integer k.

A vertex cover is a subset S ⊆ V of the vertices such that every edge e ∈
E has at least one endpoint in S. Is there a vertex cover of size |S| ≤ k?

Two problem parameters: n = |V| and k.

For constant k, Vertex Cover can be solved in polynomial time: Check all

the 𝑛
𝑘

subsets of size k. For each one it takes O(kn) time to find out if it

is a vertex cover. The total running time is O(kn 𝑛
𝑘

) = O(knk+1).

This is impractical. For example, if n=1000 and k=10, a computer

executing 106 instructions per second takes 1025 seconds. This is larger

than the age of the universe.

Will develop an algorithm having a running time of O(2kkn). For n=1000

and k=10, the time is still bounded by a few seconds.

© S. Albers

40WS 2018/19

Vertex Cover

Lemma: If in G the maximum degree of any vertex is at most d and there

is a vertex cover of size at most k, then G has at most kd edges.

Proof: Let S be a vertex cover in G of size k‘ ≤ k. Every edge in G has at

least one endpoint in S. However, each vertex in S can cover at most d

edges. Thus there are at most k‘d ≤ kd edges in G.

Corollary: If G has a vertex cover of size k, then it has at most k(n-1) ≤

kn edges.

© S. Albers

41WS 2018/19

Algorithm for Vertex Cover

In a first step the algorithm checks if G has more than kn edges. If so, the

graph does not have a vertex cover of size k. Otherwise the algorithm

proceeds.

For any v ∈ V, let G\{v} be the graph obtained from G by deleting v and

its incident edges.

Lemma: Let {u,v} be any edge of G. Graph G has a vertex cover of size

at most k if and only if at least one of the graphs G\{u} and G\{v} has a

vertex cover of size at most k-1.

© S. Albers

42WS 2018/19

Algorithm for Vertex Cover

Proof: Suppose that G has a vertex cover S of size at most k. For any

edge {u,v} in G, at least one of u and v is contained in S. Assume that it

contains u. Then S\{u} must cover all edges that have neither endpoint

equal to u. Hence S\{u} is a vertex cover of size k-1 for G\{u}.

Conversely, suppose that one of G\{u} and G\{v} has a vertex cover of

size at most k-1. Assume that G\{u} has such a cover T. Then T ∪ {u}

covers all the edges of G.

© S. Albers

43WS 2018/19

Pseudocode

Algorithm Vertex Cover

Search for a vertex cover of size k in G=(V,E).

1. if |E| > k |V| then return “G has no vertex cover of size k“ endif;

2. if |E| = 0 then return ∅ endif;

3. Let {u,v} be any edge of G;

4. Recursively check if G\{u} or G\{v} has a vertex cover of size k-1;

5. if at least one of them, say G\{u}, has such a cover T then

6. return T ∪ {u};

7. else return „G has no vertex cover of size k“;

8. endif;

© S. Albers

44WS 2018/19

Analysis

Theorem: The running time of the Vertex Cover Algorithm is O(2kkn).

Proof:

T(n,k) = running time on a graph with n vertices and parameter k

There holds T(n,1) ≤ cn

T(n,k) ≤ 2T(n,k-1) + cn,

for some constant c.

By induction on k we can show that T(n,k) ≤ c·2kkn holds for all n.

If k=1, the inequality is satisfied for all n. Suppose that it holds for k-1.

Then T(n,k) ≤ 2T(n-1,k-1) + cn

≤ 2c·2k-1(k-1)n + cn

= c·2kkn - c·2kn + cn

≤ c·2kkn.

© S. Albers

45WS 2018/19

Solving NP-hard problems on trees

Study NP-complete / NP-hard problems on inputs that are structurally

simple.

Many NP-complete graph problems can be solved efficiently on trees.

Intuition: A subtree rooted at v forms an almost independent subproblem

that interacts with the rest of the tree only through v.

Problem Independent Set: Given graph G=(V,E), a set S ⊆ V is

independent if no two vertices of V are connected by an edge. Find a

maximum-size independent set.

© S. Albers

46WS 2018/19

Independent Set on trees

Greedy approach: Every tree has a leaf, i.e. a vertex of degree 1.

Let v be a leaf and {u,v} be the unique edge incident to v. An

independent set contains either u or v.

Lemma: If T = (V,E) is a tree and v is a leaf of T, then there exists a

maximum-size independent set that contains v.

Proof: Consider a maximum-size independent set S and let {u,v} be the

unique edge incident to v. Set S contains one of u or v. If it contains v,

we are done. Otherwise we can delete u and add v, thereby obtaining

another independent set of the same size.

© S. Albers

47WS 2018/19

Algorithm

Greedy approach: The algorithm repeatedly identifies and deletes

vertices that can be placed in the independent set.

The deletions may disconnect the tree. Hence the algorithm actually

works on a forest, i.e. a graph in which each connected component is a

tree.

We will describe the algorithm for a forest. An optimal solution for a forest

is the union of the optimal solutions for each tree component.

© S. Albers

48WS 2018/19

Algorithm

Algorithm Independent Set

Find a maximum-size independent set in a forest F.

1. S := ∅;

2. while F has as least one edge do

3. Let {u,v} be any edge of F such that v is a leaf;

4. S := S ∪ {v};

5. Delete from F vertices u, v and all edges incident to them;

6. endwhile;

7. return S;

Theorem: The above algorithm finds a maximum size independent set in

a forest.

The algorithm can be implemented to run in linear time. One simply

maintains at any time a list of the leaves.

© S. Albers

49WS 2018/19

Maximum-Weight Independent Set on trees

Weighted Independent Set in Trees: Tree T=(V,E), where each vertex

v ∈ V has a positive real weight wv. Find an independent set S so that

the total weight σ𝑣ϵ𝑆𝑤𝑣 is as large as possible.

Again consider an edge {u,v}, where v is a leaf.

Including v into the independent set blocks fewer vertices. However, if

wv < wu, this might not be the best choice.

Both options, i.e. the inclusion of u or v, have to be considered. If u is

not included in the independent set, then all of its children may be

added.

© S. Albers

50WS 2018/19

Maximum-Weight Independent Set on trees

Dynamic programming approach: Root the tree at an arbitrary vertex

r. Start at the leaves and gradually work up the tree.

For any vertex u,

solve the subproblem associated with the tree Tu rooted at u,

after the subproblems have been solved for all the children of u.

OPTin(u) = maximum weight of an independent set of Tu that includes u

OPTout(u) = maximum weight of an independent set of Tu that does not

include u

OPTin(u) = wu + σ𝑣 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑣)𝑂𝑃𝑇𝑜𝑢𝑡(𝑣)

OPTout(u) = σ𝑣 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑣)max{ 𝑂𝑃𝑇𝑜𝑢𝑡(𝑣), 𝑂𝑃𝑇𝑖𝑛 (𝑣) }

© S. Albers

51WS 2018/19

Pseudocode

Algorithm Maximum-Weight Independent Set

Find a maximum weight-independent set of a tree T.

1. Root the tree at a vertex r;

2. for all u of T in postorder do

3. if u is leaf then

4. Mout[u] := 0; Min[u] := wu;

5. else

6. Mout[u] := wu + σ𝑣 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑣)M𝑜𝑢𝑡[𝑣];

7. Min[u] := σ𝑣 ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑣)max{ M𝑜𝑢𝑡[𝑣], M𝑖𝑛 [𝑣]};

8. endif;

9. return max M𝑜𝑢𝑡 𝑟 ,M𝑖𝑛 [𝑟] ;

Arrays Mout[u] and Min[u] hold the values OPTin(u) and OPTin(u), respectively.

We can recover the maximum-weight independent set by recording, for each

vertex, the decision taken.

© S. Albers

52WS 2018/19

Result

Theorem: The above algorithm finds a maximum-weight independent set in

trees in linear time.

© S. Albers

