SOLVING A CERTAIN RECURSION.

MAXIMILIAN JANKE

In the exercise classes we were left with solving the following recursion which
described the run-time 7" of a randomized algorithm for finding the median of an
array of n elements: For n < 2 we have T'(n) < Cn for some constant C, else we
have
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To solve the recursion we intended to see via induction that we have T'(n) < Kn
for a constant K yet to be determined. In fact any K > 12C will work. E|

For n < 2 it was given that T'(n) < Cn < Kn. The aim of this document is to
outline how to proceed with the induction step for large n > 2.

Inductively we have:
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is maximized for k = g

< 0, and its first derivative

One can quickly check that the function f(k) = k(”n_k)
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Indeed this function is concave, we have 92 f = —=
Opf = =2 vanishes for k = 5. We hence have
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In particular we get:
1
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'In fact if we assumed T'(n) < Cn for all n < n’ we could choose any K > 4C' if n’ was large
enough. We did not specify the value n’ in the exercise.
1



2 MAXIMILIAN JANKE

For the second inequality we use that n > 3, for the last inequality we need to
choose K > 12C..

As an exercise one may try to analyze the run-time of Quicksort using a similar
approach. Of course the argument presented in the lecture notes is shorter and
more elegant.



