
SOLVING A CERTAIN RECURSION.

MAXIMILIAN JANKE

In the exercise classes we were left with solving the following recursion which
described the run-time T of a randomized algorithm for finding the median of an
array of n elements: For n ≤ 2 we have T (n) ≤ Cn for some constant C, else we
have

T (n) ≤ max
1≤k≤n

1

n

n∑
j=1

{
T (j) for j ≥ k
T (n− j) for j < k

+ Cn.

To solve the recursion we intended to see via induction that we have T (n) ≤ Kn
for a constant K yet to be determined. In fact any K ≥ 12C will work. 1

For n < 2 it was given that T (n) ≤ Cn ≤ Kn. The aim of this document is to
outline how to proceed with the induction step for large n > 2.

Inductively we have:

T (n) ≤ max
1≤k≤n

1

n

n∑
j=1

{
jK for j ≥ k
(n− j)K for j < k

+ Cn.

≤ max
1≤k≤n

1

n

(
k∑

j=1

(n− j) +
n∑

j=k+1

j

)
K + Cn

≤ max
1≤k≤n

1

n

(
k(n− k) +

k(k + 1)

2
+ k(n− k) +

(n− k)(n− k + 1)

2

)
K + Cn

= max
1≤k≤n

(
n + 1

2
+

k(n− k)

n

)
K + Cn

One can quickly check that the function f(k) = k(n−k)
n

is maximized for k = n
2
.

Indeed this function is concave, we have ∂2
kf = −2

n
< 0, and its first derivative

∂kf = n−2k
n

vanishes for k = n
2
. We hence have

max
1≤k≤n

f(k) ≤ f
(n

2

)
=

n

4
.

In particular we get:

T (n) ≤
(
n + 1

2
+

n

4

)
K + Cn

≤
(

11

12
K + C

)
n ≤ Kn.

Date: October 31, 2018.
1In fact if we assumed T (n) ≤ Cn for all n ≤ n′ we could choose any K > 4C if n′ was large

enough. We did not specify the value n′ in the exercise.
1



2 MAXIMILIAN JANKE

For the second inequality we use that n ≥ 3, for the last inequality we need to
choose K ≥ 12C.

As an exercise one may try to analyze the run-time of Quicksort using a similar
approach. Of course the argument presented in the lecture notes is shorter and
more elegant.


