
EXTRA EXERCISES CONCERNING THE LECTURE

MAXIMILIAN JANKE

In this document I outline certain exercises which somehow relate to selected
topics from the lecture Advanced Algorithms held by Professor Albers in the
winter term 2018/19: Divide and Conquer, Fibonacci heaps, Greedy algorithms
and dynamic programming. I mostly chose these exercises because I personally
find them interesting and now upload them as some students asked me to. Note
though that these exercise do not aim at representing or preparing for the exam,
though thinking about them should not be detrimental. I do not plan on publishing
solutions to the exercises, albeit I am willing to give hints, sketches of solutions
or reference for chosen exercises if people are interested. Feel free to discuss the
exercises and give feedback (especially if you spot mistakes) via e-mail or during
my office hours.

1. Graph coloring

Given an undirected graph G = (V,E) where each node has degree at most
d outline a linear-time greedy-algorithm that finds a (d + 1)-coloring of G, i.e. a
function f : V → {1, . . . d+ 1} such that no two neighbouring nodes in G have the
same color.

Give an example of a graph on which the greedy algorithm uses the minimum
amount of colors possible and an example where it does not.

2. Refueling

We want to take a road-trip along a street of length L. For each distance unit
the car needs one unit of fuel. Its tank can contain t fuel units and is full at the
beginning of the trip. Along the road there are n gas stations which are described
by a pair of numbers (li, pi) ∈ N2. Here li denotes their respective distance from
the start, while pi is the price at which the gas station sells fuel. Whenever the
car reaches a gas station, we can buy as many units of fuel as fit into its tank
at a price of pi per unit. Of course we may buy less. Each unit of fuel allows
us to travel one unit of distance. We assume that the gas stations are ordered
increasingly by the numbers li and that it is possible for the car to make the trip
if it fully refuels at every gas station along the way. Of course by doing so it may
spend more money than necessary.

Give a linear-time algorithm that outputs the minimum amount of money
needed to make the trip.

3. Balancing a binary tree

Let be a binary tree T with n nodes and a number k. On the first exercise sheet
you showed that there exists a partition of the nodes of T into one set of size k

Date: January 29, 2019.
1



2 MAXIMILIAN JANKE

and one set of size n− k such that there are at most 3 log2(n) edges between both
sets. Now find a polynomial algorithm that, given T and k, finds the minimum
number of edges between the two sets of any partition where one set has size k
and the other has size n− k.

4. Fibonacci heap

Consider a Fibonacci heap that immediately consolidates itself after every op-
eration. Show that all operations but the union-operation still have the same
amortized runtime as in the lecture.

5. Travelling Salesman

In the travelling salesman problem, a complete graph Kn = (V,E) with n ≥ 3
nodes is given as well as edge weights c : E → R. One now wants to find a cycle
in Kn of minimum weight that visits every node exactly once.

Find an algorithm with exponential running time for the problem, i.e. running
time O(cn) for some constant c.

6. Longest Path [CM]

6.1. colored graph. Let k ∈ N be a positive integer. We are given a k-colored
graph, that is a graph G = (V,E) with a coloring function f : V → {1, . . . , k}.
We make no assumptions on the colors related to the structure of the graph. In
particular we do not assume neighbouring nodes to be distinctly colored. We want
to find a path that visits exactly one node of each color or decide that none exists.

Give an algorithm that has running time O (n100) if k is fixed. (Of course the
constant in the O-notation will grow quite fast in k.)

6.2. Arbitrary graph. Given a number k ∈ N and a graph G we want to decide
whether the graph G contains a path of length k that visits no node twice. Use the
algorithm for the previous problem to find a randomized algorithm that has run-
ning time O (n100) if k is fixed and outputs such a path with constant probability.
(Of course the constant in the O-notation will grow quite fast in k.)

If the number k is part of the input (and not fixed) this problem is NP-hard. In
particular no polynomial algorithm is known.

7. Bridges in a graph

Given an undirected, connected graph G an edge e ∈ E(G) is called a bridge
if G becomes disconnected if e is removed. In linear time, find a bridge in G or
decide that none exists.

References

[CM] Cygan, Marek, et al. Parameterized algorithms. Vol. 3. Cham: Springer, 2015. 2

E-mail address: maximilian.janke@in.tum.de


	1. Graph coloring
	2. Refueling
	3. Balancing a binary tree
	4. Fibonacci heap
	5. Travelling Salesman
	6. Longest Path CM
	7. Bridges in a graph
	References

