Advanced Algorithms

Due November 6, 2018 at 10:00

Note: You are welcome to submit in groups of two. If you wish to submit individually, then Exercises 1 and 2 are to be solved.

Exercise 1 (FFT Computation - 10 points)

Compute the product of the two polynomials using the Fast Fourier Transform (FFT):

- $p(x)=5 x+2$,
- $q(x)=6 x+1$.

Specify all (recursive) calls of the FFT algorithm as well as the outputs and the assignments of the temporary variables used during the execution.

Exercise 2 (FFT for SetSum - 10 points)

Let S and T be two sets of integers in the range $[0, z-1]$ where z is a power of two. Use a single DFT to compute the following in $O\left(z \log _{2} z\right)$ time:

1. all elements contained in the set $S+T:=\{s+t: s \in S, t \in T\}$,
2. for each element $u \in S+T$, the number $k_{u}:=|\{(s, t) \in S \times T: s+t=u\}|$.

Hint: Find some polynomials p_{S}, p_{T} of degree $<z$ that represents the sets S and T.

Exercise 3 (D\&C Multiplication - 10 points)

1. Let $p x+r$ and $q x+s$ be two linear polynomials. Show how to multiply them using only three multiplications.
Hint: One of the multiplications is $((p+r) \cdot(q+s))$.
2. Give a divide-and-conquer algorithm for multiplying two polynomials of degree at most n in time $O\left(n^{\log _{2} 3}\right)$.

Exercise 4 (D\&C Median - 10 points)

We are given two sets A and B containing integers and both sets are stored as (increasingly) ordered arrays. Our goal is to compute the median of their disjoint union $A \amalg B$. Show how to do that in time $O(\log (|A|+|B|))$ using a divide-and-conquer based algorithm.

