Advanced Algorithms

Due November 15, 2018 at 12:00

Note: You are welcome to submit in groups of two. If you wish to submit individually either exercise may be solved.

Exercise 1 (Randomized Quicksort - 10 points)

Consider the following way to pick a random permutation π of the set of $n(>2)$ integers $\mathcal{I}_{n}:=\{1,2, \ldots, n\}:$

- Run Randomized Quicksort (RandQuick).
- Let T be the recursion tree corresponding to the execution of Randomized Quicksort.
- Let π be the permutation induced by the level-order traversal of T (i.e., the nodes are visited in the increasing order of level numbers and in a left-to-right order within each level).

Is π uniformly distributed over the space of all permutations of the elements in \mathcal{I}_{n} ? Explain your answer.

Exercise 2 (Another Euclidean algorithm - 10 points)

Let us consider the set $R=\{a+b i \mid a, b \in \mathbb{Z}\} \subseteq \mathbb{C}$. Recall that the square of the absolute value of an element $x=a+b i \in R$ is given by $|x|^{2}=a^{2}+b^{2}$. Given two elements $x, y \in R$ an element g is called their greatest common divisor if both elements are divisible by g, i.e. for some $\tilde{x}, \tilde{y} \in R$ we have $x=\tilde{x} g$ and $y=\tilde{y} g$, and if there are integers $s, t \in R$ such that $g=s x+t y$.
Show, that given $x, y \in R \backslash\{0\}$, we can always compute elements $p, q \in R$ such that $x=p y+q$ and $|q|^{2} \leq \frac{|y|^{2}}{2}$ holds. In the lecture we studied an algorithm attributed to Euclid to compute the greatest common divisor of two integers. Now adapt the algorithm to compute a greatest common divisor g of x and y using at most $O\left(\log \left(|y|^{2}\right)\right)$ arithmetic operations.

