Advanced Algorithms

Due January 8, 2019 at 10:00
Note: You are welcome to submit in groups of two. If you wish to submit individually, you should solve Exercise 4 (dynamic table) and one of the other exercises.

Exercise 1 (Potential Method - 10 points)

1. Suppose we have a potential function Φ such that $\Phi_{0} \neq 0$ and $\Phi_{i} \geq \Phi_{0}$ for all $i \geq 1$. Show that there exists a potential function Φ^{\prime} such that $\Phi_{0}^{\prime}=0$ and $\Phi_{i}^{\prime} \geq 0$ for all i, and the total amortized costs using Φ^{\prime} are the same as the total amortized costs using Φ.
2. In the class we studied increment operations on a binary counter. Suppose we wish not only to increment a binary counter but also to reset it to zero (i.e., make all bits in it 0). Show how to implement a binary counter as an array of bits so that any sequence of n INCREMENT and RESET operations takes time $O(n)$ on an initially zero counter. (Hint: keep a pointer to the high-order 1.)

Exercise 2 (Expensive powers of 2 - 10 points)

Given a data structure with costs c_{i} for the i 'th operation where

$$
c_{i}=\left\{\begin{array}{l}
i \text { for } i \in\left\{2^{k}: k \in \mathbb{N}\right\}, \\
1 \text { otherwise },
\end{array}\right.
$$

determine the (constant) amortized costs for an operation using the potential method of analysis.

Exercise 3 (Amortized analysis of a ternary counter - 10 points)

We consider a ternary counter, i.e., a counter with three as its base and digits 0 , 1 , and 2. The counter starts at 0 and is incremented n times by 1 . The cost for increasing the counter from $i-1$ to i is determined by the number of digits of the counter that has to be changed. Let $A(n)$ be the cost for successively increasing the counter from 0 to n. Show that $A(n)$ is linear in n and determine the minimal $c \in \mathbb{R}$ satisfying the following:

$$
\begin{equation*}
A(n) \leq c n \text { for all } n \in \mathbb{N} \tag{1}
\end{equation*}
$$

Hints:

1. Use amortized analysis to show that your $c \in \mathbb{R}$ fulfills inequality (11).
2. Show that $c-\varepsilon$ does not satisfy inequality (1) for any $\varepsilon>0$.

Exercise 4 (Dynamic Table - 10 points)

Suppose that instead of contracting a table by halving its size when its load factor drops below $1 / 4$, we contract it by multiplying its size by $2 / 3$ when its load factor drops below $1 / 3$. Using the potential function

$$
\Phi(T)=|2 \cdot \operatorname{num}[T]-\operatorname{size}[T]|,
$$

show that the amortized cost of a Table-Delete that uses this strategy is bounded above by a constant.

