Advanced Algorithms

Due January 15, 2019 at 10:00

Note: You are welcome to submit in groups of two. If you wish to submit individually, you should solve exercise 1 .

Exercise 1 (Fibonacci Heaps - 10 points)

Execute the following operations on an initially empty Fibonacci heap:

$$
\begin{aligned}
& \operatorname{insert}(15), \operatorname{insert}(27), \operatorname{insert}(6), \operatorname{insert}(34), \operatorname{insert}(42), \\
& \operatorname{insert}(35), \operatorname{insert}(3), \operatorname{insert}(41), \operatorname{insert}(22), \operatorname{insert}(12), \\
& \text { deletemin}(), \text { decreasekey}(27,2), \text { decreasekey }(34,17), \text { deletemin(). }
\end{aligned}
$$

For all intermediate stages, illustrate the structure of the Fibonacci heap, fill in the key values and possible marks of the nodes and tag the current minimum. A new element shall always be inserted to the right of the current minimum. The consolidation during the operation deletemin shall start with the element to the right of the deleted minimum.

Exercise 2 (Generalized Cascading-Cut - 10 points)

Suppose we generalize the cascading-cut rule to cut a node v from its parent as soon as it loses its k th child, for some integer constant k. (The rule from the lecture uses $k=2$.) For what values of k is the maximum rank of any node in a Fibonacci heap with n nodes in $O\left(\log _{2} n\right)$?
Hint: You may use the fact that a recursion for a sequence $\left(a_{n}\right)$ of the form

$$
a_{n}=c_{k-1} a_{n-1}+c_{k-2} a_{n-2}+\cdots+c_{0} a_{n-k}
$$

(i.e. a linear, homogeneous recursion with constant coefficients) has an explicit general solution in terms of the roots of its characteristic polynomial

$$
x^{k}-\left(c_{k-1} x^{k-1}+c_{k-2} x^{k-2}+\cdots+c_{0}\right)
$$

