
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Algorithmen und Komplexität
Prof. Dr. Susanne Albers
Dr. Arindam Khan
Maximilian Janke
Luisa Peter

Winter Semester 2018/19
Problem Set 10

January 15, 2019

Advanced Algorithms

Due January 22, 2019 at 10:00

Note: You are welcome to submit in groups of two. If you wish to submit individually,
you should solve one of the Exercises 1 and 2 as well as one of the Exercises 3 and 4.

Exercise 1 (Greedy strategy for interval scheduling – 10 points)
Suppose that instead of always selecting the interval with the earliest finish time, we
select the interval with the latest start time that is compatible with all previously selected
intervals. Adjust the algorithm Greedy* from the lecture appropriately and, just as in
the lecture, prove using induction that it yields an optimal solution.

Exercise 2 (Scheduling unit-time tasks with deadlines – 10 points)
Let S = {1, 2, . . . , n} be a finite set of n unit-time tasks, i.e. jobs that require exactly
one unit of time to complete. The tasks should be scheduled on a single processor, which
means that the ith task in the schedule begins at time i−1 and completes at time i. Each
task i is supposed to finish by its deadline 1 ≤ di ≤ n and a penalty wi ≥ 0 is incurred if
task i is not finished by time di. No penalty is incurred if a task finishes by its deadline.
The goal is to find a schedule for S that minimizes the total penalty incurred by missed
deadlines.
Consider the following algorithm. Let all n time slots be initially empty, where time slot
i is the unit-length slot of time that finishes at time i. We consider the tasks in order of
monotonically decreasing penalty. When considering task j, if there exists a time slot at
or before j’s deadline dj that is still empty, assign task j to the latest such slot. If there
is no such slot, assign task j to the latest of the as yet unfilled slots.
Prove that this algorithm always gives an optimal answer.

Exercise 3 (Dynamic programming – 10 points)
A square Q with side length n ∈ N is subdivided into n2 squares of side length 1 that are
all parallel to Q. Each one of the small squares is either colored grey or white. The goal is
to determine the side length and the position of the biggest square in Q that is completely
colored in white and parallel to Q. In case there is more than one such square, any one of
those may be chosen. See Figure 1 for an example. Design an algorithm that solves the
problem and employs dynamic programming. Describe your algorithm and argue that it
is correct. Include its complete recursive equation.
(Advanced version: If you want, you can design an algorithm that finds the biggest
rectangle in Q that is parallel to Q and completely colored white instead of the biggest

1 / 2



Figure 1: The bold edging marks a biggest square that is completely colored in white.

square. This version of the exercise is optional. We won’t provide a sample solution and
you won’t receive bonus points for solving it.)

Exercise 4 (Optimizing space in a library – 10 points)
A library bought a new bookcase. The shelves all have the same fixed width S > 0
but the vertical distances between shelves can be adjusted individually according to the
heights of the books placed on them. The order in which the n books are placed on the
shelves is fixed by the cataloging system of the library: b1, b2, . . . , bn. A book bi has width
wi > 0 and height hi > 0. Using dynamic programming, design an algorithm that places
the books on the shelves such that the total space usage, i.e. the sum of the heights of
the largest book on each shelf, is minimized. Argue that your algorithm always finds an
optimal solution and state its time complexity.

2


