Mincost Flow

Problem Definition:

min >, c(e)f(e)
st. VeeE: 0< f(e) <ul(e)
YveV: f()=b)

» G = (V,E) is a directed graph.
u:E— Ry U {co} is the capacity function.

v

v

c:E — R is the cost function
(note that c(e) may be negative).

» b:V - R, >,cyb(v) =0isademand function.

m Ernst Mayr, Harald Racke 482/503

Solve Maxflow Using Mincost Flow

9—>

%”%\?*/

v

Given a flow network for a standard maxflow problem.

Set b(v) = 0 for every node. Keep the capacity function u
for all edges. Set the cost c(e) for every edge to 0.

Add an edge from t to s with infinite capacity and cost —1.
Then, val(f*) = — cost(fmin), Where f* is a maxflow, and
fmin is @ mincost-flow.

v

vV Yy

m 14 Mincost Flow
Ernst Mayr, Harald Racke 483/503

Solve Maxflow Using Mincost Flow

Solve decision version of maxflow:

» Given a flow network for a standard maxflow problem, and
a value k.

> Set b(v) = 0 for every node apart from s or t. Set b(s) = —k
and b(t) = k.

> Set edge-costs to zero, and keep the capacities.

> There exists a maxflow of value at least k if and only if the
mincost-flow problem is feasible.

m 14 Mincost Flow
Ernst Mayr, Harald Racke 484/503

Generalization

Our model:

min >, c(e)f(e)
st. VeeE: 0< f(e) <ul(e)
VveV: fw)=>b)

where b:V = R, >, b(v) =0; u:E - Ry U {oo}; c:E — R;
A more general model?

min >, c(e)f(e)
s.t. VeeE: f(e) < f(e) <ule)
YVveV: alv) < f(v) <b(v)

wherea:V-R,b:V->R;¥{:E—-RU{—0}, u:E—-RU {0}
c:E - R;

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke 485/503

Generalization

Differences
» Flow along an edge e may have non-zero lower bound ¥(e).
> Flow along e may have negative upper bound u(e).

» The demand at a node v may have lower bound a(v) and
upper bound b(v) instead of just lower bound = upper
bound = b(v).

m 14 Mincost Flow
Ernst Mayr, Harald Racke 486/503

Reduction |

min >, c(e)f(e)
s.t. VeeE: fe) < f(e) <ule)
VveV: alw) < f(v) <b)

We can assume that a(v) = b(v):

Add new node 7.
Add edge (r,v) forallv € V.

Set £(e) = c(e) = 0 for these
edges.

Setu(e) =b(v) —a(v) for
edge (7, v).

Seta(v) =b(v) forallv e V.

Setb(r) =—-> ey b(v).

— >, b(v) is negative; hence 7 is only sending flow.

Reduction lI
min >, c(e)f(e)

s.t. VeeE: fe) < f(e) <ule)
YveV: f(v)=b)

We can assume that either £(e) # —c or u(e) # oo:

If c(e) = 0 we can contract the edge/identify nodes u and v.

If c(e) += 0 we can transform the graph so that c(e) = 0.

m 14 Mincost Flow
Ernst Mayr, Harald Racke 488/503

Reduction lI

We can transform any network so that a particular edge has
cost c(e) = O:

—>

- () -

< u) ¢ (v)
ue)= o
L(e) = -
cle)=06=+0

<+

Additionally we set b(u) = 0.

m 14 Mincost Flow
Ernst Mayr, Harald Racke 489/503

Reduction Il
min >, c(e)f(e)
s.t. VeecE: {(e) < f(e) <u(e)
YveV: f()=>b)

We can assume that £(e) = —oo:

® 20
ule)=d +
f(e) =—oc0

cle)=a

®

ue)=oo
L(e)=-d
cle)=—-a

Replace the edge by an edge in opposite direction.

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke 490/503

Reduction IV

min >, c(e)f(e)
s.t. VeeE: fe) < f(e) <ule)
YveV: f(v)=b)

We can assume that £(e) = 0:

® 20
u(e)
f(e)=d + —
c(e)

b =g b(o) =
ue) —d g
L) =0
c(e)

The added edges have infinite capacity and cost c(e)/2.

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke 491/503

Applications

Caterer Problem
> She needs to supply ¥; hapkins on N successive days.
» She can buy new napkins at p cents each.

» She can launder them at a fast laundry that takes m days
and cost f cents a napkin.

» She can use a slow laundry that takes k > m days and costs
s cents each.

> At the end of each day she should determine how many to
send to each laundry and how many to buy in order to fulfill
demand.

» Minimize cost.

m 14 Mincost Flow
Ernst Mayr, Harald Racke 492/503

day edges:

upper bound: u(e;) = o;
lower bound: {£(e;) = ri;
cost: c(e) =0

®

[
>

[i9]

reservoir

upper bound: u(ej) = oo;
buy edges: |lower bound: £(e;) = 0;
cost: c(e) =p

reservoir

upper bound: u(e;) = oo;
forward edges: |lower bound: £(e;) = 0;
cost: c(e) =0

reservoir

upper bound: u(e;) = oo;
slow edges: |lower bound: £(e;) = 0;
cost: c(e) =s

trash edges:

-
>

<
<

reservoir

upper bound: u(ej) = oo;
lower bound: €(e;) = 0;
cost: c(e) =0

Residual Graph

Version A:
The residual graph G’ for a mincost flow is just a copy of the
graph G.

If we send f'(e) along an edge, the corresponding edge ¢’ in the
residual graph has its lower and upper bound changed to

L(e') =L(e) — f(e) and u(e’) = ule) — f(e).

Version B:

The residual graph for a mincost flow is exactly defined as the
residual graph for standard flows, with the only exception that
one needs to define a cost for the residual edge.

For a flow of z from u to v the residual edge (v, 1) has capacity
z and a cost of —c((u,v)).

m 14 Mincost Flow
Ernst Mayr, Harald Racke 494/503

14 Mincost Flow

A circulation in a graph G = (V,E) is a function f: E — R" that
has an excess flow f(v) = O for every node v € V.

A circulation is feasible if it fulfills capacity constraints, i.e.,
f(e) <u(e) for every edge of G.

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke 495/503

Lemma 1

A given flow is a mincost-flow if and only if the corresponding
residual graph Gy does not have a feasible circulation of
negative cost.

= Suppose that g is a feasible circulation of negative cost in
the residual graph.

Then f + g is a feasible flow with cost
cost(f) + cost(g) < cost(f). Hence, f is not minimum cost.

< Let f be a non-mincost flow, and let f* be a min-cost flow.
We need to show that the residual graph has a feasible
circulation with negative cost.

Clearly f* — f is a circulation of negative cost. One can also
easily see that it is feasible for the residual graph. (after
sending — f in the residual graph (pushing all flow back) we
arrive at the original graph; for this f* is clearly feasible)

| For previous slide:

1g = f* — fis obtained by computing A(e) = f*(e) — f(e) for every
'edge e = (u,v). If the result is positive set g((u,v)) = A(e) and
:g((v,u)) = 0. Otherwise set g((u,v)) =0 and g((v,u)) = -A(e).

m 14 Mincost Flow
Ernst Mayr, Harald Racke 496/503

14 Mincost Flow

Lemma 2

A graph (without zero-capacity edges) has a feasible circulation
of negative cost if and only if it has a negative cycle w.r.t.
edge-weights c : E — R.

Proof.
> Suppose that we have a negative cost circulation.

» Find directed cycle only using edges that have non-zero
flow.

> If this cycle has negative cost you are done.

> Otherwise send flow in opposite direction along the cycle
until the bottleneck edge(s) does not carry any flow.

> You still have a circulation with negative cost.
> Repeat.

m 14 Mincost Flow
Ernst Mayr, Harald Racke 497/503

14 Mincost Flow

Algorithm 23 CycleCanceling(G = (V,E),c,u,b)

1: establish a feasible flow f in G

2: while G contains negative cycle do

3 use Bellman-Ford to find a negative circuit Z
4

5

0 —min{ur(e) |e € Z}
augment S units along Z and update G ¢

m 14 Mincost Flow
Ernst Mayr, Harald Racke 498/503

How do we find the initial feasible flow?

» Connect new node s to all nodes with negative b(v)-value.
» Connect nodes with positive b(v)-value to a new node t.

> There exist a feasible flow in the original graph iff in the
resulting graph there exists an s-t flow of value

> (b)) = > b).

v:b(v)<0 v:b(v)>0

14 Mincost Flow

0 —— demand

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke 500/503

14 Mincost Flow

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke 501/503

14 Mincost Flow

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke 501/503

14 Mincost Flow

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke 501/503

14 Mincost Flow

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke 501/503

14 Mincost Flow

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke 501/503

14 Mincost Flow

Lemma 3

The improving cycle algorithm runs in time ©(nm?CU), for
integer capacities and costs, when for all edges e, |c(e)| < C and
lule)| < U.

> Running time of Bellman-Ford is O (mn).

» Pushing flow along the cycle can be done in time O (n).
> Each iteration decreases the total cost by at least 1.
>

The true optimum cost must lie in the interval
[-mCU,...,+mCU].

Note that this lemma is weak since it does not allow for edges
with infinite capacity.

m 14 Mincost Flow
Ernst Mayr, Harald Racke 502/503

14 Mincost Flow

A general mincost flow problem is of the following form:

min >, c(e)f(e)
s.t. VeeE: f(e) < f(e) <ule)
YVveV: a(v) < f(v) <b(v)

wherea:V-R,b:V -R;¥{:E—-RU{-0}, u:E—RU {0}
c:E—-R;

Lemma 4 (without proof)

A general mincost flow problem can be solved in polynomial
time.

‘m 14 Mincost Flow
Ernst Mayr, Harald Racke

503/503

	Mincost Flow

