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Splay Trees

Disadvantage of balanced search trees:
— worst case; no advantage for easy inputs
— additional memory required

— complicated implementation

Splay Trees:

+ after access, an element is moved to the root; splay(x)
repeated accesses are faster

— only amortized guarantee

— read-operations change the tree
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Splay Trees

find(x)
> search for x according to a search tree
> |et X be last element on search-path
> splay(x)
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Splay Trees

insert(x)

> search for x; x is last visited element during search
(successer or predecessor of x)

> splay(ix) moves X to the root

> insert x as new root

AA=

£
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Splay Trees

delete(x)
» search for x; splay(x); remove x
> search largest element X in A
> splay(x) (on subtree A)
>

connect root of B as right child of x

AD = BA = EA
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Move to Root

How to bring element to root?

> one (bad) option: moveToRoot(x)
> iteratively do rotation around parent of x until x is root

> if x is left child do right rotation otw. left rotation
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Splay: Zig Case

better option splay(x):

> zig case: if x is child of root do left rotation or right
rotation around parent

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 164/183



Splay: Zigzag Case

better option splay(x):

» zigzag case: if x is right child and parent of x is left child
(or x left child parent of x right child)

» do double right rotation around grand-parent (resp. double
left rotation)
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Double Rotations




Splay: Zigzig Case

better option splay(x):

> zigzig case: if x is left child and parent of x is left child (or
x right child, parent of x right child)

> do right roation around grand-parent followed by right
rotation around parent (resp. left rotations)
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Splay vs. Move to Root
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Static Optimality

Suppose we have a sequence of m find-operations. find(x)
appears h, times in this sequence.

The cost of a static search tree T is:

cost(T) =m + Z hy depthr(x)
X

The total cost for processing the sequence on a splay-tree is
O(cost(Tmin)), where Thin is an optimal static search tree.
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Dynamic Optimality

Let S be a sequence with m find-operations.

Let A be a data-structure based on a search tree:
> the cost for accessing element x is 1 + depth(x);

> after accessing x the tree may be re-arranged through
rotations;

Conjecture:
A splay tree that only contains elements from S has cost
O(cost(A, S)), for processing S.
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Lemma 1
Splay Trees have an amortized running time of O (logn) for all
operations.
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Amortized Analysis

Definition 2

A data structure with operations op; (), ...,0pk() has amortized
running times ty, ..., ty for these operations if the following
holds.

Suppose you are given a sequence of operations (starting with
an empty data-structure) that operate on at most n elements,
and let k; denote the number of occurences of op;() within this
sequence. Then the actual running time must be at most
iki-ti(n).
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Potential Method

Introduce a potential for the data structure.
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Potential Method

Introduce a potential for the data structure.
> ®(D;) is the potential after the i-th operation.

» Amortized cost of the i-th operation is

Ci=¢ci+®(D;) —®(Dj-1) .

» Show that ®(D;) > ®(Dy).

Then

2. €i

k
i=1

k k
< > ci+®(Dy) - Z
i=1 i=1

This means the amortized costs can be used to derive a bound
on the total cost.
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Example: Stack

Stack
> S.push()
> S.pop()
> S. multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

v

The user has to ensure that pop and multipop do not
generate an underflow.
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Example: Stack

Stack
> S.push()
> S.pop()
> S. multipop(k): removes k items from the stack. If the

stack currently contains less than k items it empties the
stack.

» The user has to ensure that pop and multipop do not
generate an underflow.

Actual cost:
> S.push(): cost 1.
> S.pop(): cost 1.
> S. multipop(k): cost min{size, k} = k.
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Example: Stack

Use potential function ®(S) = number of elements on the stack.
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Example: Stack

Use potential function ®(S) = number of elements on the stack.

Amortized cost:
» S.push(): cost

> S.pop(): cost

> S. multipop(k): cost

Cmp = Cmp + AP = min{size, k} — min{size,k} <0 .
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Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.
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n-bits, and maybe change them.
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Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs
one time-unit.

Incrementing an n-bit binary counter may require to examine
n-bits, and maybe change them.

Actual cost:
» Changing bit from 0 to 1: cost 1.
» Changing bit from 1 to 0: cost 1.

> Increment: costis k + 1, where k is the number of
consecutive ones in the least significant bit-positions (e.g,
001101 has k = 1).
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Example: Binary Counter
Choose potential function ®(x) = k, where k denotes the
number of ones in the binary representation of x.

Amortized cost:
» Changing bit from 0 to 1:

Coo1=Co1+ADP=1+1<2.

» Changing bit from 1 to O:

Ciloo=Cilo0+Ad=1-1<0".

> |ncrement: Let k denotes the number of consecutive ones in
the least significant bit-positions. An increment involves k
(1 — 0)-operations, and one (0 — 1)-operation.

Hence, the amortized cost is kCi_o + Co—1 < 2.



Splay Trees

potential function for splay trees:
> size s(x) = |Ty]
> rank r(x) = log,(s(x))
> &(T) =yperr(v)

amortized cost = real cost + potential change

The cost is essentially the cost of the splay-operation, which is 1
plus the number of rotations.
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Splay: Zig Case

AP =
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Splay: Zig Case

A® =71 (x) +7 (p) —7r(x) —r(p)

=7 (p) —r(x)
<¥'(x) —7r(x)

Costzig < 1+ 3(r'(x) —7r(x))
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Splay: Zigzig Case

AP =7 (x)+7 (p)+7v'(g) —r(x)—7r(p)—7(9)

=7 (p) +7'(g) —7r(x) —7r(p)

<r'(x)+7'(g) —r(x)—r(x)
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Splay: Zigzig Case

AD =7 (x) +7'(p) +7'(g) =7 (x) =7 (p) = 7(9)

=7 (p) +7'(g) —7r(x) —7r(p)

<r'(x)+7'(g) —r(x)—r(x)

=r'(x)+7'(g) +r(x) = 3r (x) + 3r'(x) —r(x) — 2r(x)
==2r"(x) +7'(g) +r(x) + 3(r'(x) —r(x))

<-2+3(r"(x) —7r(x)) = COStzigzig < 3(r'(x) —r(x))
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Splay: Zigzig Case

%(T(x) +71'(g) - 21"(x))
_ 1
2
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Splay: Zigzig Case

%(T(x) +7'(g) - 2r’(x))
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Splay: Zigzig Case

%(T(x) +7'(g) - 2r’(x))

= %<1Og(5(x)) +log(s’'(g)) — 210g(5’(x))>
s(x) 1 s'(g)
(o) + 2008 (Go)
1s(x) 1s'(g) 1
=1 g(gj(’;) N Ej’(i)> Slog(g)

1y
)




Splay: Zigzig Case

%(T(x) +71'(g) - 21"(x))

= l(log(s(x)) +log(s' () — 2log(s' (x)))

2
(x) 1 "(9)
g(;,();)) 710g<j'(i)>

T
1s(x) 15'(g) 1
< log(ij,();) + 5?6%) slog<§> =-1

2
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Splay: Zigzag Case

AP =7"(x) + 7 (p) +7'(g) —v(x) —7(p) —7(9)
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Splay: Zigzag Case

AP =7"(x) + 7 (p) +7'(g) —v(x) —7(p) —7(9)
=7r'(p) +7v'(g) —r(x) - r(p)
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Splay: Zigzag Case

AP =7"(x) + 7 (p) +7'(g) —v(x) —7(p) —7(9)
=7 (p) +7'(9) —7(x) =7 (p)
v (p)+7r'(g) —r(x) -7r(x)
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Splay: Zigzag Case

AP =7"(x) +7"(p) +7'(g) —7(x) —7(p) —7(g)
=1 (p) +7'(9) —r(x) —7r(p)
<r'(p)+7r'(g) —r(x)—7r(x)
=7 (p)+7r'(g) = 2r" (x) +2¥"(x) — 2r(x)

‘m 7.3 Splay Trees
Ernst Mayr, Harald Racke 182/183



Splay: Zigzag Case

AP =7 (x)+7 (p)+7'(g) —r(x) —r(p) —7r(g)
=7 (p) +7'(g) —7r(x) -7r(p)
<r'(p)+7r'(g) —r(x)—7r(x)
=r'(p) +7r'(g) —2r"(x) + 2r"(x) — 2r(x)
<-2+2(r'(x) —r(x))
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Splay: Zigzag Case

AP =7 (x)+7 (p)+7'(g) —r(x) —r(p) —7r(g)
=7 (p) +7'(g) —7r(x) -7r(p)
<r'(p)+7r'(g) —r(x)—7r(x)
=r'(p) +7r'(g) —2r"(x) + 2r"(x) — 2r(x)

<-2+2(r'(x) =7(x)) = COStzigzag < 3(r'(x) —¥(x))
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Splay: Zigzag Case

%(T’(v) +7'(g) - 2 (x))
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Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))

= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>
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Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))

= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>

1s'(p)  15'(9)
slog(ZS,(X) + 23’(x)>
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Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))

= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>

1s'(p) 1s'(g) 1
= log<§j’(>€) i 5?6’2)) = 1°g<§>
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Splay: Zigzag Case

%(T’(v) +7'(g) - 2r’(x))
= %<log(5'(p)) +1log(s'(g)) — 210g(g'(x))>

15'(p) | 15'(g) 1
<log (35700 * 2y n) <loe(3) =1
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Amortized cost of the whole splay operation:

<1+1+ > 3(r(x)—7r-1(x))

steps t
=2 + 3(r(root) — ro(x))
< O(logn)
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