7.5 (*a*, *b*)-trees

Definition 1

For $b \ge 2a - 1$ an (a, b)-tree is a search tree with the following properties

- 1. all leaves have the same distance to the root
- 2. every internal non-root vertex v has at least a and at most b children
- 3. the root has degree at least 2 if the tree is non-empty
- 4. the internal vertices do not contain data, but only keys (external search tree)
- 5. there is a special dummy leaf node with key-value ∞

	25.
L L L Ernst Mayr, Haraid Racke	

7.5 (*a*, *b*)-trees

Each internal node v with d(v) children stores d-1 keys k_1, \ldots, k_{d-1} . The *i*-th subtree of v fulfills

 $k_{i-1} < ext{ key in } i ext{-th sub-tree } \leq k_i$,

where we use $k_0 = -\infty$ and $k_d = \infty$.

Ernst Mayr, Harald Räcke

lan. 2019

191/203

7.5 (*a*, *b*)-trees

25. Jan. 2019 192/203

7.5 (*a*, *b*)-trees

Variants

- The dummy leaf element may not exist; it only makes implementation more convenient.
- Variants in which b = 2a are commonly referred to as *B*-trees.
- A B-tree usually refers to the variant in which keys and data are stored at internal nodes.
- A B⁺ tree stores the data only at leaf nodes as in our definition. Sometimes the leaf nodes are also connected in a linear list data structure to speed up the computation of successors and predecessors.
- A B* tree requires that a node is at least 2/3-full as opposed to 1/2-full (the requirement of a B-tree).

Lemma 3

Let T be an (a, b)-tree for n > 0 elements (i.e., n + 1 leaf nodes) and height h (number of edges from root to a leaf vertex). Then

1. $2a^{h-1} \le n+1 \le b^h$

2. $\log_b(n+1) \le h \le 1 + \log_a(\frac{n+1}{2})$

Proof.

- If n > 0 the root has degree at least 2 and all other nodes have degree at least a. This gives that the number of leaf nodes is at least 2a^{h-1}.
- Analogously, the degree of any node is at most b and, hence, the number of leaf nodes at most b^h.

Ernst Mayr, Harald Räcke	7.5 (<i>a</i> , <i>b</i>)-trees	25. Jan. 2019 1 95/203

Search

Search(8)

The search is straightforward. It is only important that you need to go all the way to the leaf.

Time: $O(b \cdot h) = O(b \cdot \log n)$, if the individual nodes are organized as linear lists.

החוחר	7.5 (<i>a</i> , <i>b</i>)-trees	25. Jan. 2019
🛛 🛄 🗍 🖉 Ernst Mayr, Harald Räcke		196/203

Insert

Rebalance(*v*):

- Let k_i , i = 1, ..., b denote the keys stored in v.
- Let $j := \lfloor \frac{b+1}{2} \rfloor$ be the middle element.
- Create two nodes v₁, and v₂. v₁ gets all keys k₁,..., k_{j-1} and v₂ gets keys k_{j+1},..., k_b.
- ▶ Both nodes get at least $\lfloor \frac{b-1}{2} \rfloor$ keys, and have therefore degree at least $\lfloor \frac{b-1}{2} \rfloor + 1 \ge a$ since $b \ge 2a 1$.
- They get at most $\lceil \frac{b-1}{2} \rceil$ keys, and have therefore degree at most $\lceil \frac{b-1}{2} \rceil + 1 \le b$ (since $b \ge 2$).
- The key k_j is promoted to the parent of v. The current pointer to v is altered to point to v₁, and a new pointer (to the right of k_j) in the parent is added to point to v₂.
- ► Then, re-balance the parent.

החוהר	7.5 (<i>a</i> , <i>b</i>)-trees	25. Jan. 2019
UUUU Ernst Mayr, Harald Räcke		198/203

Insert

Insert(7)

Delete

Rebalance'(v):

- If there is a neighbour of v that has at least a keys take over the largest (if right neighbor) or smallest (if left neighbour) and the corresponding sub-tree.
- If not: merge v with one of its neighbours.
- The merged node contains at most (a − 2) + (a − 1) + 1 keys, and has therefore at most 2a − 1 ≤ b successors.
- Then rebalance the parent.
- During this process the root may become empty. In this case the root is deleted and the height of the tree decreases.

Delete

Delete element *x* (pointer to leaf vertex):

- Let v denote the parent of x. If key[x] is contained in v, remove the key from v, and delete the leaf vertex.
- Otherwise delete the key of the predecessor of x from v; delete the leaf vertex; and replace the occurrence of key[x] in internal nodes by the predecessor key. (Note that it appears in exactly one internal vertex).
- If now the number of keys in v is below a 1 perform Rebalance'(v).

 7.5 (a, b)-trees
 25. Jan. 2019

 Ernst Mayr, Harald Räcke
 200/203

25. Jan. 2019 201/203

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2, 4)-trees:

(2, 4)-trees and red black trees

There is a close relation between red-black trees and (2, 4)-trees:

Augme	nting Data Structures		
Bibliogra [MS08]	ohy Kurt Mehlhorn, Peter Sanders: Algorithms and Data Structures — The Basic Toolbox,		
[CLRS90]	Springer, 2008 Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009		
A descrip Chapter 7	tion of B-trees (a specific variant of (a,b) -trees) can be found in Chapter 18 of [CLRS90]. 2 of [MS08] discusses (a,b) -trees as discussed in the lecture.		
TIM Ernst I	7.5 (<i>a</i> , <i>b</i>)-trees Mayr, Harald Räcke	25. Jan. 2019 204/203	

