6.5 Transformation of the Recurrence

Example 10
fo=1
fi=2
Sn=JSn-1-fnoaforn=2.

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 117/222



6.5 Transformation of the Recurrence

Example 10
So=1
fi=2
Sn=Jn-1"fno2forn=>2.
Define

gn i=10g fn .

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 117/222



6.5 Transformation of the Recurrence

Example 10

fo=1

fi=2

fn=fn-1-fnoforn=2.
o= loa£h = {09 (("“l i '(V“D - QOJ(‘L-\) +l 'é (‘(h-z)
Define "

In =108 fn . é»\—l* G-

Then

In =9Gn-1+gn-—2 forn =2

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 117/222



6.5 Transformation of the Recurrence

Example 10
fo=1
fi=2
Sn=JSn-1-fnoaforn=2.
Define
Gn =108 fn .
Then

In =9gn-1+gn-2forn =2
g1 =log2 = 1(for log = log,), go =0

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 117/222



6.5 Transformation of the Recurrence

Example 10
fo=1
fi=2
Sn=JSn-1-fnoaforn=2.
Define
Gn =108 fn .
Then

In =9gn-1+gn-2forn=2
g1 =log?2 = 1(for log = log,), go =0
gn = F,, (n-th Fibonacci number)

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 117/222



6.5 Transformation of the Recurrence

Example 10
fo=1
fi=2
Sn=JSn-1-fnoaforn=2.
Define
Gn =108 fn .
Then

In =9n-1+9gn-2forn=2

g1 =log?2 = 1(for log = log,), go =0
gn = F,, (n-th Fibonacci number)

Sn = 2fn

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 117/222



6.5 Transformation of the Recurrence

Example 11

fi=1
fn:3f%+n;forn:2k,kzl;

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 118/222



6.5 Transformation of the Recurrence

Example 11

fi=1
fn = 3jg,+-n;for11::2k,k >1;

Define
gk = Jok -

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 118/222



6.5 Transformation of the Recurrence

Example 11
fi=1
fn:3f% +n; form=2% k>1:
Define
Ik = for .
Then:
go=1

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 118/222



6.5 Transformation of the Recurrence

Example 11
fi=1
fn:3f% +n; form=2% k>1:
= - ko U
B ‘[1“‘31(1u-'+1 S&K_,+9.
Define
Ik = for .
Then:
go=1

gk =3gk1+2K k=1

‘m 6.5 Transformation of the Recurrence
Ernst Mayr, Harald Racke 118/222



6 Recurrences
We get

9k =3 [gk-1] + 2K
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6 Recurrences

Let n = 2k:
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Part Il

Data Structures
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Abstract Data Type

An abstract data type (ADT) is defined by an interface of

operations or methods that can be performed and that have a
defined behavior.

The data types in this lecture all operate on objects that are
represented by a [key, value] pair.

» The key comes from a totally ordered set, and we assume
that there is an efficient comparison function.

» The value can be anything; it usually carries satellite
information important for the application that uses the ADT.
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Dynamic Set Operations

> S.search(k): Returns pointer to object x from S with
key[x] = k or null.
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> S.search(k): Returns pointer to object x from S with
key[x] = k or null.

> S.insert(x): Inserts object x into set S. key[x] must not
currently exist in the data-structure.

> S.delete(x): Given pointer to object x from S, delete x
from the set.

> S.minimum(): Return pointer to object with smallest
key-value in S.

» S.maximum(): Return pointer to object with largest
key-value in S.

> S.successor(x): Return pointer to the next larger element
in S or null if x is maximum.

> S.predecessor(x): Return pointer to the next smaller
element in S or null if x is minimum.
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Dynamic Set Operations

» S.union(S’): Sets S :=SuUS’. The set S’ is destroyed.
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Dynamic Set Operations

» S.union(S’): Sets S :=SuUS’. The set S’ is destroyed.
> S.merge(S’): Sets S:=S uUS’. Requires SNS" = .

> S.split(k, S’):
S:={xeS|key[x] <k}, S :={xeS|key[x] > k}.

> S.concatenate(S’): S:=SuS’.
Requires key[S. maximum() ] < key[S’. minimum() ].
> S.decrease-key(x, k): Replace key[x] by k < key[x].
J. @L\quéf Hey CI it g
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Examples of ADTs
Stack:

» S.push(x): Insert an element.

> S.pop(): Return the element from S that was inserted most
recently; delete it from S.

> S.empty(): Tell if S contains any object.
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Examples of ADTs
Stack:

» S.push(x): Insert an element.

> S.pop(): Return the element from S that was inserted most
recently; delete it from S.

> S.empty(): Tell if S contains any object.
Queue:
> S.enqueue(x): Insert an element.

> S.dequeue(): Return the element that is longest in the
structure; delete it from S.

> S.empty(): Tell if S contains any object.
Priority-Queue:
> S.insert(x): Insert an element.

> S.delete-min(): Return the element with lowest key-value;
delete it from S.



7 Dictionary

Dictionary:
> S.insert(x): Insert an element x.
> S.delete(x): Delete the element pointed to by x.

» S.search(k): Return a pointer to an element e with
key[e] = k in S if it exists; otherwise return null.
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7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary
tree. Each tree-node corresponds to an element. All elements in
the left sub-tree of a node v have a smaller key-value than
key[v] and elements in the right sub-tree have a larger-key
value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:
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7.1 Binary Search Trees

We consider the following operations on binary search trees.
Note that this is a super-set of the dictionary-operations.

T.
. delete(x)
. search(k)

. successor(x)

>

vV v v v vY
NN NN NN

insert(x)

. predecessor(x)
. minimum()

. maximum{()

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees

128/222



Binary Search Trees: Searching

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
129/222




Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
129/222




Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
129/222




Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
129/222




Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
129/222




Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
129/222




Binary Search Trees: Searching

TreeSearch(root, 17)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
129/222




Binary Search Trees: Searching

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
130/222




Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
130/222




Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
130/222




Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
130/222




Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
130/222




Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
130/222




Binary Search Trees: Searching

TreeSearch(root, 8)

Algorithm 5 TreeSearch(x, k)

1: if x = null or k = key[x] return x
2: if k < key[x] return TreeSearch(left[x], k)
3: else return TreeSearch(right[x], k)

m Ernst Mayr, Harald Racke

7.1 Binary Search Trees
130/222




Binary Search Trees: Minimum

Algorithm 6 TreeMin(x)

1: if x = null or left[x] = null return x
2: return TreeMin(left[x])
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Binary Search Trees: Successor

Algorithm 7 TreeSucc(x)
1: if right[x] # null return TreeMin(right[x])
2: y < parent[x]

3: while y # null and x = right[y] do

4

5

X < y;y < parent[x]
. return y;
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Binary Search Trees: Insert

Algorithm 8 Treelnsert(x,z)

if x = null then
root[T] — z; parent[z] — null;
return;
if key[x] > key[z] then
if left[x] = null then
left[x] < z; parent[z] — x;
else Treelnsert(left[x], z);

else
if right[x] = null then
right[x] < z; parent[z] — x;
else Treelnsert(right[x], z);
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left[x] < z; parent[z] — x;
else Treelnsert(left[x], z);

Search for z. At some
point the search stops
at a null-pointer. This
is the place to insert z.

else
if right[x] = null then
right[x] < z; parent[z] — x;
else Treelnsert(right[x], z);
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Binary Search Trees: Delete

Case 1:
Element does not have any children

» Simply go to the parent and set the corresponding pointer
to null.
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Case 1:
Element does not have any children

» Simply go to the parent and set the corresponding pointer
to null.



Binary Search Trees: Delete

Case 2:
Element has exactly one child

> Splice the element out of the tree by connecting its parent
to its successor.
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Binary Search Trees: Delete

Case 3:
Element has two children

» Find the successor of the element
> Splice successor out of the tree

» Replace content of element by content of successor
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Case 3:
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» Find the successor of the element
> Splice successor out of the tree

» Replace content of element by content of successor



Binary Search Trees: Delete

Algorithm 9 TreeDelete(z)
1: if left[z] = null or right[z] = null
2 then y — z else y — TreeSucc(z); select y to splice out
3: if left[y] # null
4: then x — left[y] else x — right[y]; x is child of  (or null)
5: if x # null then parent[x] — parent[y]; parent[x] is correct
6
7
8

. if parent[y] = null then
root[T] « x

. else
9: if y = left[parent[y]] then +fix pointer to x
10: left[parent[y]] < x
11: else
12: right[parent[y]] — x

13: if v + z then copy y-data to z
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Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.
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Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.

However the height of the tree may become as large as ©(n).
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Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.

However the height of the tree may become as large as ©(n).

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments
to guarantee a height of O(logn).
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Balanced Binary Search Trees

All operations on a binary search tree can be performed in time
O(h), where h denotes the height of the tree.

However the height of the tree may become as large as ©(n).

Balanced Binary Search Trees
With each insert- and delete-operation perform local adjustments
to guarantee a height of @(logn).

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees,
AA trees, Treaps

similar: SPLAY trees.
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7.2 Red Black Trees

Definition 12

A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that
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Definition 12

A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that

1. The root is black.
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7.2 Red Black Trees

Definition 12

A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that

1. The root is black.
2. All leaf nodes are black.

‘m 7.2 Red Black Trees
Ernst Mayr, Harald Racke 137/222



7.2 Red Black Trees

Definition 12
A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that
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2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the
same number of black nodes.
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7.2 Red Black Trees

Definition 12
A red black tree is a balanced binary search tree in which each
internal node has two children. Each internal node has a color,
such that

1. The root is black.

2. All leaf nodes are black.

3. For each node, all paths to descendant leaves contain the
same number of black nodes.

4. If a node is red then both its children are black.

The null-pointers in a binary search tree are replaced by pointers
to special null-vertices, that do not carry any object-data
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Red Black Trees: Example
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7.2 Red Black Trees

Lemma 13
A red-black tree with n internal nodes has height at most
O(logn).
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7.2 Red Black Trees

Lemma 13
A red-black tree with n internal nodes has height at most
O(logn).

Definition 14

The black height bh(v) of a node v in a red black tree is the
number of black nodes on a path from v to a leaf vertex (not
counting v).
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7.2 Red Black Trees

Lemma 13
A red-black tree with n internal nodes has height at most
O(logn).

Definition 14

The black height bh(v) of a node v in a red black tree is the
number of black nodes on a path from v to a leaf vertex (not
counting v).

We first show:

Lemma 15
A sub-tree of black height bh(v) in a red black tree contains at
least 2Ph(V) _ 1 jnternal vertices.
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