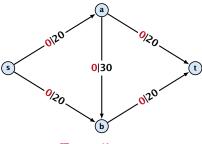
11 Augmenting Path Algorithms

Greedy-algorithm:

- ightharpoonup start with f(e) = 0 everywhere
- find an s-t path with f(e) < c(e) on every edge
- augment flow along the path
- repeat as long as possible



fflow/wedlue: 200

100/128

Ernst Mayr, Harald Räcke

The Residual Graph

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- ▶ Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e_2' with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.

$$G$$
 $\stackrel{\text{U}}{\longleftarrow} 6|10$ $\stackrel{5|20}{\longrightarrow} \text{V}$

$$G_f = 0$$
 $\longrightarrow 0$ $\longrightarrow 0$

11.1 The Generic Augmenting Path Algorithm

101/128

Augmenting Path Algorithm

Definition 4

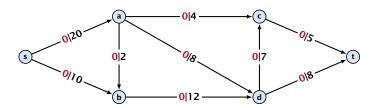
An augmenting path with respect to flow f, is a path from s to tin the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 1 FordFulkerson(G = (V, E, c))

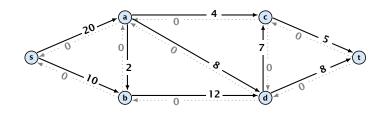
- 1: Initialize $f(e) \leftarrow 0$ for all edges.
- 2: **while** \exists augmenting path p in G_f **do**
- augment as much flow along p as possible.

Augmenting Paths

Ernst Mayr, Harald Räcke



flow value: 0



11.1 The Generic Augmenting Path Algorithm

102/128

11.1 The Generic Augmenting Path Algorithm

Augmenting Path Algorithm

Theorem 5

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 6

The value of a maximum flow is equal to the value of a minimum cut.

Proof.

Let f be a flow. The following are equivalent:

- **1.** There exists a cut A such that $val(f) = cap(A, V \setminus A)$.
- **2.** Flow *f* is a maximum flow.
- **3.** There is no augmenting path w.r.t. f.

П

11.1 The Generic Augmenting Path Algorithm

104/128

Augmenting Path Algorithm

$$val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$$
$$= \sum_{e \in out(A)} c(e)$$
$$= cap(A, V \setminus A)$$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

Augmenting Path Algorithm

 $1. \Rightarrow 2.$

This we already showed.

 $2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

- $3. \Rightarrow 1.$
 - Let f be a flow with no augmenting paths.
 - Let A be the set of vertices reachable from s in the residual graph along non-zero capacity edges.
 - ▶ Since there is no augmenting path we have $s \in A$ and $t \notin A$.

11.1 The Generic Augmenting Path Algorithm

105/128

Analysis

Assumption:

All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

Lemma 7

The algorithm terminates in at most $val(f^*) \leq nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of O(nmC).

Theorem 8

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

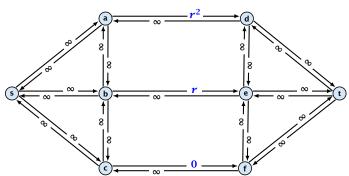
││∐│││ Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

108/128

A Pathological Input

Let $r = \frac{1}{2}(\sqrt{5} - 1)$. Then $r^{n+2} = r^n - r^{n+1}$.

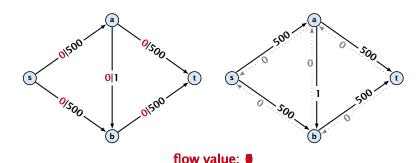


floftofthen wetter? 10^{2} 13^{2}

Running time may be infinite!!!

A Bad Input

Problem: The running time may not be polynomial

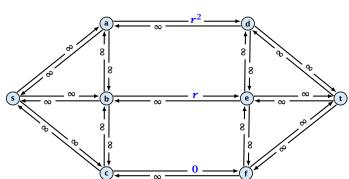


Question:

Can we tweak the algorithm so that the running time is polynomial in the input length?

11.1 The Generic Augmenting Path Algorithm

109/128



How to choose augmenting paths?

- ▶ We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Overview: Shortest Augmenting Paths

Lemma 9

The length of the shortest augmenting path never decreases.

Lemma 10

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

||||||||||||| Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

112/128

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest s-v path in G_f (along non-zero edges).

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path P is a shortest s-u path in G_f iff it is an s-u path in L_G .

edge of G_f

edge of L_G

11.2 Shortest Augmenting Paths

114/128

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 11

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. This gives a running time of $\mathcal{O}(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time O(m) via BFS.
- \triangleright $\mathcal{O}(m)$ augmentations for paths of exactly k < n edges.

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

113/128

In the following we assume that the residual graph G_f does not contain zero capacity edges.

This means, we construct it in the usual sense and then delete edges of zero capacity.

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:

- ▶ Bottleneck edges on the chosen path are deleted.
- ▶ Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.

Shortest Augmenting Paths

Theorem 12

The shortest augmenting path algorithm performs at most O(mn) augmentations. Each augmentation can be performed in time O(m).

Theorem 13 (without proof)

There exist networks with $m = \Theta(n^2)$ that require O(mn)augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow (why?).

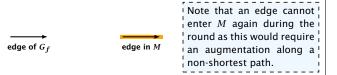
Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let M denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An s-t path in G_f that uses edges not in M has length larger than k, even when using edges added to G_f during the round.

In each augmentation an edge is deleted from M.



Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $O(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

Shortest Augmenting Paths

We maintain a subset M of the edges of G_f with the guarantee that a shortest s-t path using only edges from M is a shortest augmenting path.

With each augmentation some edges are deleted from M.

When M does not contain an s-t path anymore the distance between s and t strictly increases.

Note that *M* is not the set of edges of the level graph but a subset of level-graph edges.

 $\left|\left|\left|\left|\right|\right|\right|$ Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

120/128

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

121/128

Analysis

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing M for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most O(mn), since every search (successful (i.e., reaching t) or unsuccessful) decreases the number of edges in M and takes time $\mathcal{O}(n)$.

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in M for the next search.

There are at most n phases. Hence, total cost is $O(mn^2)$.

Suppose that the initial distance between s and t in G_f is k.

M is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from M.

Either you find t after at most n steps, or you end at a node vthat does not have any outgoing edges.

You can delete incoming edges of v from M.

How to choose augmenting paths?

- ▶ We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

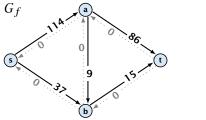
Ernst Mayr, Harald Räcke

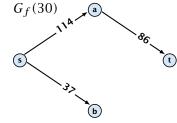
11.3 Capacity Scaling

Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- ightharpoonup Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .





11.3 Capacity Scaling

22. Feb. 202

124/128

Capacity Scaling

```
Algorithm 1 \max flow(G, s, t, c)

1: foreach e \in E do f_e \leftarrow 0;

2: \Delta \leftarrow 2^{\lceil log_2 C \rceil}

3: while \Delta \geq 1 do

4: G_f(\Delta) \leftarrow \Delta-residual graph

5: while there is augmenting path P in G_f(\Delta) do

6: f \leftarrow \text{augment}(f, c, P)

7: update(G_f(\Delta))

8: \Delta \leftarrow \Delta/2

9: return f
```

Ernst Mayr, Harald Räcke

11.3 Capacity Scaling

22 Feb 2020

125/128

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

The algorithm computes a maxflow:

- **b** because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

Capacity Scaling

Lemma 14

There are $\lceil \log C \rceil + 1$ iterations over Δ .

Proof: obvious.

Lemma 15

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $\operatorname{val}(f) + m\Delta$.

Proof: less obvious, but simple:

- ▶ There must exist an s-t cut in $G_f(\Delta)$ of zero capacity.
- ▶ In G_f this cut can have capacity at most $m\Delta$.
- This gives me an upper bound on the flow that I can still add.

Capacity Scaling		
Lemma 16		
There are at most 2m augmentations per scaling-phase.		
Proof:		
► Let <i>f</i> be the flow at the end of the previous phase.		
$ ightharpoonup \operatorname{val}(f^*) \le \operatorname{val}(f) + 2m\Delta$		
▶ Each augmentation increases flow by Δ .		
Theorem 17		
We need $\mathcal{O}(m \log C)$ augmentations. The algorithm can be		
implemented in time $O(m^2 \log C)$.		
11.3 Capacity Scaling Ernst Mayr, Harald Räcke	22. Feb. 2020 128/128	
LI LI LI LI LI LI LI LI MAYI, NATAU KACKE	120/120	