
15 Global Mincut

Given an undirected, capacitated graph G = (V , E, c) find a

partition of V into two non-empty sets S, V \ S s.t. the capacity of

edges between both sets is minimized.
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15 Global Mincut

We can solve this problem using standard maxflow/mincut.

ñ Construct a directed graph G′ = (V , E′) that has edges (u,v)
and (v,u) for every edge {u,v} ∈ E.

ñ Fix an arbitrary node s ∈ V as source. Compute a minimum

s-t cut for all possible choices t ∈ V, t ≠ s. (Time: O(n4))
ñ Let (S, V \ S) be a minimum global mincut. The above

algorithm will output a cut of capacity cap(S, V \ S) whenever

|{s, t} ∩ S| = 1.
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Edge Contractions

ñ Given a graph G = (V , E) and an edge e = {u,v}.
ñ The graph G/e is obtained by “identifying” u and v to form a

new node.

ñ Resulting parallel edges are replaced by a single edge, whose

capacity equals the sum of capacities of the parallel edges.

Example 6
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ñ Edge-contractions do no decrease the size of the mincut.
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Edge Contractions

We can perform an edge-contraction in time O(n).



Randomized Mincut Algorithm

Algorithm 1 KargerMincut(G = (V , E, c))
1: for i = 1→ n− 2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: return only cut in G

ñ Let Gt denote the graph after the (n− t)-th iteration, when t
nodes are left.

ñ Note that the final graph G2 only contains a single edge.

ñ The cut in G2 corresponds to a cut in the original graph G
with the same capacity.

ñ What is the probability that this algorithm returns a mincut?
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Analysis

What is the probability that a given mincut A is still possible

after round i?

ñ It is still possible to obtain cut A in the end if so far no edge

in (A,V \A) has been contracted.



Analysis

What is the probability that we select an edge from A in

iteration i?

ñ Let min = cap(A,V \A) denote the capacity of a mincut.

ñ Let cap(v) be capacity of edges incident to vertex

v ∈ Vn−i+1.

ñ Clearly, cap(v) ≥min.

ñ Summing cap(v) over all edges gives

2c(E) = 2
∑
e∈E

c(e) =
∑
v∈V

cap(v) ≥ (n− i+ 1) ·min

ñ Hence, the probability of choosing an edge from the cut is at

most min /c(E) ≤ 2/(n− i+ 1).

n− i+ 1 is the number of nodes in graph
Gn−i+1 = (Vn−i+1, En−i+1), the graph at the start of iteration i.
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Analysis

The probability that we do not choose an edge from the cut in

iteration i is

1− 2
n− i+ 1

= n− i− 1
n− i+ 1

.

The probability that the cut is alive after iteration n− t (after

which t nodes are left) is at most

n−t∏

i=1

n− i− 1
n− i+ 1

= t(t − 1)
n(n− 1)

.

Choosing t = 2 gives that with probability 1/
(
n
2

)
the algorithm

computes a mincut.
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Analysis

Repeating the algorithm c lnn
(
n
2

)
times

gives that the probability

that we are never successful is

(
1− 1

(n2)

)(n2)c lnn

≤
(
e−1/(n2)

)(n2)c lnn

≤ n−c ,

where we used 1− x ≤ e−x.

Theorem 7

The randomized mincut algorithm computes an optimal cut with

high probability. The total running time is O(n4 logn).
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Improved Algorithm

Algorithm 2 RecursiveMincut(G = (V , E, c))
1: for i = 1→ n−n/√2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: if |V | = 2 return cut-value;

5: cuta ← RecursiveMincut(G);

6: cutb ← RecursiveMincut(G);

7: return min{cuta, cutb}

Running time:

ñ T(n) = 2T
( n√

2

)
+O(n2)

ñ This gives T(n) = O(n2 logn).

Note that the above implementation
only works for very special values of n.
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Probability of Success

The probability of not contracting an edge from the mincut during

one iteration through the for-loop is at least

t(t − 1)
n(n− 1)

≥ t2

n2 =
1
2
,

as t = n√
2
.



Probability of Success

Gn
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( n√
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)4

size of
rest graph

recursion
tree

We can estimate the success probability by using the following

game on the recursion tree. Delete every edge with probability 1
2 .

If in the end you have a path from the root to at least one leaf

node you are successful.
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Probability of Success

Let for an edge e in the recursion tree, h(e) denote the height

(distance to leaf level) of the parent-node of e (end-point that is

higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of

e to a descendant leaf, after we randomly deleted edges. Note

that an edge can only be alive if it hasn’t been deleted.

Lemma 8

The probability that an edge e is alive is at least 1
h(e)+1 .



Probability of Success

Let for an edge e in the recursion tree, h(e) denote the height

(distance to leaf level) of the parent-node of e (end-point that is

higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of

e to a descendant leaf, after we randomly deleted edges. Note

that an edge can only be alive if it hasn’t been deleted.

Lemma 8

The probability that an edge e is alive is at least 1
h(e)+1 .



Probability of Success

Let for an edge e in the recursion tree, h(e) denote the height

(distance to leaf level) of the parent-node of e (end-point that is

higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of

e to a descendant leaf, after we randomly deleted edges. Note

that an edge can only be alive if it hasn’t been deleted.

Lemma 8

The probability that an edge e is alive is at least 1
h(e)+1 .



Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.
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15 Global Mincut

Lemma 9

One run of the algorithm can be performed in time O(n2 logn)
and has a success probability of Ω( 1

logn).

Doing Θ(log2n) runs gives that the algorithm succeeds with high

probability. The total running time is O(n2 log3n).
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