
15 Global Mincut

Given an undirected, capacitated graph G = (V , E, c) find a

partition of V into two non-empty sets S, V \ S s.t. the capacity of

edges between both sets is minimized.

1

2

3

4

5

6

7

8
9

15 Global Mincut

Given an undirected, capacitated graph G = (V , E, c) find a

partition of V into two non-empty sets S, V \ S s.t. the capacity of

edges between both sets is minimized.

1

2

3

4

5

6

7

8
9

15 Global Mincut

Given an undirected, capacitated graph G = (V , E, c) find a

partition of V into two non-empty sets S, V \ S s.t. the capacity of

edges between both sets is minimized.

1

2

3

4

5

6

7

8
9

15 Global Mincut

Given an undirected, capacitated graph G = (V , E, c) find a

partition of V into two non-empty sets S, V \ S s.t. the capacity of

edges between both sets is minimized.

1

2

3

4

5

6

7

8
9

15 Global Mincut

We can solve this problem using standard maxflow/mincut.

ñ Construct a directed graph G′ = (V , E′) that has edges (u,v)
and (v,u) for every edge {u,v} ∈ E.

ñ Fix an arbitrary node s ∈ V as source. Compute a minimum

s-t cut for all possible choices t ∈ V, t ≠ s. (Time: O(n4))
ñ Let (S, V \ S) be a minimum global mincut. The above

algorithm will output a cut of capacity cap(S, V \ S) whenever

|{s, t} ∩ S| = 1.

1

2

3

4

5

6

7

8
9

15 Global Mincut

We can solve this problem using standard maxflow/mincut.

ñ Construct a directed graph G′ = (V , E′) that has edges (u,v)
and (v,u) for every edge {u,v} ∈ E.

ñ Fix an arbitrary node s ∈ V as source. Compute a minimum

s-t cut for all possible choices t ∈ V, t ≠ s. (Time: O(n4))
ñ Let (S, V \ S) be a minimum global mincut. The above

algorithm will output a cut of capacity cap(S, V \ S) whenever

|{s, t} ∩ S| = 1.

1

2

3

4

5

6

7

8
9

15 Global Mincut

We can solve this problem using standard maxflow/mincut.

ñ Construct a directed graph G′ = (V , E′) that has edges (u,v)
and (v,u) for every edge {u,v} ∈ E.

ñ Fix an arbitrary node s ∈ V as source. Compute a minimum

s-t cut for all possible choices t ∈ V, t ≠ s. (Time: O(n4))

ñ Let (S, V \ S) be a minimum global mincut. The above

algorithm will output a cut of capacity cap(S, V \ S) whenever

|{s, t} ∩ S| = 1.

1

2

3

4

5

6

7

8
s

15 Global Mincut

We can solve this problem using standard maxflow/mincut.

ñ Construct a directed graph G′ = (V , E′) that has edges (u,v)
and (v,u) for every edge {u,v} ∈ E.

ñ Fix an arbitrary node s ∈ V as source. Compute a minimum

s-t cut for all possible choices t ∈ V, t ≠ s. (Time: O(n4))
ñ Let (S, V \ S) be a minimum global mincut. The above

algorithm will output a cut of capacity cap(S, V \ S) whenever

|{s, t} ∩ S| = 1.

1

2

3

4

5

6

t

8
s

Edge Contractions

ñ Given a graph G = (V , E) and an edge e = {u,v}.
ñ The graph G/e is obtained by “identifying” u and v to form a

new node.

ñ Resulting parallel edges are replaced by a single edge, whose

capacity equals the sum of capacities of the parallel edges.

Example 6

1

4

5

6

7

9

8

3

2

ñ Edge-contractions do no decrease the size of the mincut.

Edge Contractions

ñ Given a graph G = (V , E) and an edge e = {u,v}.

ñ The graph G/e is obtained by “identifying” u and v to form a

new node.

ñ Resulting parallel edges are replaced by a single edge, whose

capacity equals the sum of capacities of the parallel edges.

Example 6

1

4

5

6

7

9

8

3

2

ñ Edge-contractions do no decrease the size of the mincut.

Edge Contractions

ñ Given a graph G = (V , E) and an edge e = {u,v}.
ñ The graph G/e is obtained by “identifying” u and v to form a

new node.

ñ Resulting parallel edges are replaced by a single edge, whose

capacity equals the sum of capacities of the parallel edges.

Example 6

1

4

5

6

7

9

8

3

2

ñ Edge-contractions do no decrease the size of the mincut.

Edge Contractions

ñ Given a graph G = (V , E) and an edge e = {u,v}.
ñ The graph G/e is obtained by “identifying” u and v to form a

new node.

ñ Resulting parallel edges are replaced by a single edge, whose

capacity equals the sum of capacities of the parallel edges.

Example 6

1

4

5

6

7

9

8

3

2

ñ Edge-contractions do no decrease the size of the mincut.

Edge Contractions

ñ Given a graph G = (V , E) and an edge e = {u,v}.
ñ The graph G/e is obtained by “identifying” u and v to form a

new node.

ñ Resulting parallel edges are replaced by a single edge, whose

capacity equals the sum of capacities of the parallel edges.

Example 6

1

4

5

6

7

9

8

3

2

ñ Edge-contractions do no decrease the size of the mincut.

Edge Contractions

ñ Given a graph G = (V , E) and an edge e = {u,v}.
ñ The graph G/e is obtained by “identifying” u and v to form a

new node.

ñ Resulting parallel edges are replaced by a single edge, whose

capacity equals the sum of capacities of the parallel edges.

Example 6

1

4

5

6

7

9

8

3

2

ñ Edge-contractions do no decrease the size of the mincut.

Edge Contractions

ñ Given a graph G = (V , E) and an edge e = {u,v}.
ñ The graph G/e is obtained by “identifying” u and v to form a

new node.

ñ Resulting parallel edges are replaced by a single edge, whose

capacity equals the sum of capacities of the parallel edges.

Example 6

1

4

5

6

7

9

8

3

2

2

ñ Edge-contractions do no decrease the size of the mincut.

Edge Contractions

ñ Given a graph G = (V , E) and an edge e = {u,v}.
ñ The graph G/e is obtained by “identifying” u and v to form a

new node.

ñ Resulting parallel edges are replaced by a single edge, whose

capacity equals the sum of capacities of the parallel edges.

Example 6

1

4

5

6

7

9

8

3

2

2

ñ Edge-contractions do no decrease the size of the mincut.

Edge Contractions

We can perform an edge-contraction in time O(n).

Randomized Mincut Algorithm

Algorithm 1 KargerMincut(G = (V , E, c))
1: for i = 1→ n− 2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: return only cut in G

ñ Let Gt denote the graph after the (n− t)-th iteration, when t
nodes are left.

ñ Note that the final graph G2 only contains a single edge.

ñ The cut in G2 corresponds to a cut in the original graph G
with the same capacity.

ñ What is the probability that this algorithm returns a mincut?

Randomized Mincut Algorithm

Algorithm 1 KargerMincut(G = (V , E, c))
1: for i = 1→ n− 2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: return only cut in G

ñ Let Gt denote the graph after the (n− t)-th iteration, when t
nodes are left.

ñ Note that the final graph G2 only contains a single edge.

ñ The cut in G2 corresponds to a cut in the original graph G
with the same capacity.

ñ What is the probability that this algorithm returns a mincut?

Randomized Mincut Algorithm

Algorithm 1 KargerMincut(G = (V , E, c))
1: for i = 1→ n− 2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: return only cut in G

ñ Let Gt denote the graph after the (n− t)-th iteration, when t
nodes are left.

ñ Note that the final graph G2 only contains a single edge.

ñ The cut in G2 corresponds to a cut in the original graph G
with the same capacity.

ñ What is the probability that this algorithm returns a mincut?

Randomized Mincut Algorithm

Algorithm 1 KargerMincut(G = (V , E, c))
1: for i = 1→ n− 2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: return only cut in G

ñ Let Gt denote the graph after the (n− t)-th iteration, when t
nodes are left.

ñ Note that the final graph G2 only contains a single edge.

ñ The cut in G2 corresponds to a cut in the original graph G
with the same capacity.

ñ What is the probability that this algorithm returns a mincut?

Randomized Mincut Algorithm

Algorithm 1 KargerMincut(G = (V , E, c))
1: for i = 1→ n− 2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: return only cut in G

ñ Let Gt denote the graph after the (n− t)-th iteration, when t
nodes are left.

ñ Note that the final graph G2 only contains a single edge.

ñ The cut in G2 corresponds to a cut in the original graph G
with the same capacity.

ñ What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

6

7

9

8

3

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

6

7

9

8

3

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

6

7

9

8

3

2

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

6

7

9

8

3

2

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

6

7

9

8

3

2

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

6

7

9

8

3

2

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

6

7

9

8

32

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

6

7

9

8

32

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

67

9

8

32

2

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

67

9

8

32

2

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

67

9832

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

67

9832

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

567

9832

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

567

9832

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5679832

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5679832

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

6

7

9

8

3

2

What is the probability that this algorithm returns a mincut?

Example: Randomized Mincut Algorithm

1

4

5

6

7

9

8

3

2

What is the probability that this algorithm returns a mincut?

Analysis

What is the probability that a given mincut A is still possible

after round i?

ñ It is still possible to obtain cut A in the end if so far no edge

in (A,V \A) has been contracted.

Analysis

What is the probability that we select an edge from A in

iteration i?

ñ Let min = cap(A,V \A) denote the capacity of a mincut.

ñ Let cap(v) be capacity of edges incident to vertex

v ∈ Vn−i+1.

ñ Clearly, cap(v) ≥min.

ñ Summing cap(v) over all edges gives

2c(E) = 2
∑
e∈E

c(e) =
∑
v∈V

cap(v) ≥ (n− i+ 1) ·min

ñ Hence, the probability of choosing an edge from the cut is at

most min /c(E) ≤ 2/(n− i+ 1).

n− i+ 1 is the number of nodes in graph
Gn−i+1 = (Vn−i+1, En−i+1), the graph at the start of iteration i.

Analysis

What is the probability that we select an edge from A in

iteration i?
ñ Let min = cap(A,V \A) denote the capacity of a mincut.

ñ Let cap(v) be capacity of edges incident to vertex

v ∈ Vn−i+1.

ñ Clearly, cap(v) ≥min.

ñ Summing cap(v) over all edges gives

2c(E) = 2
∑
e∈E

c(e) =
∑
v∈V

cap(v) ≥ (n− i+ 1) ·min

ñ Hence, the probability of choosing an edge from the cut is at

most min /c(E) ≤ 2/(n− i+ 1).

n− i+ 1 is the number of nodes in graph
Gn−i+1 = (Vn−i+1, En−i+1), the graph at the start of iteration i.

Analysis

What is the probability that we select an edge from A in

iteration i?
ñ Let min = cap(A,V \A) denote the capacity of a mincut.

ñ Let cap(v) be capacity of edges incident to vertex

v ∈ Vn−i+1.

ñ Clearly, cap(v) ≥min.

ñ Summing cap(v) over all edges gives

2c(E) = 2
∑
e∈E

c(e) =
∑
v∈V

cap(v) ≥ (n− i+ 1) ·min

ñ Hence, the probability of choosing an edge from the cut is at

most min /c(E) ≤ 2/(n− i+ 1).

n− i+ 1 is the number of nodes in graph
Gn−i+1 = (Vn−i+1, En−i+1), the graph at the start of iteration i.

Analysis

What is the probability that we select an edge from A in

iteration i?
ñ Let min = cap(A,V \A) denote the capacity of a mincut.

ñ Let cap(v) be capacity of edges incident to vertex

v ∈ Vn−i+1.

ñ Clearly, cap(v) ≥min.

ñ Summing cap(v) over all edges gives

2c(E) = 2
∑
e∈E

c(e) =
∑
v∈V

cap(v) ≥ (n− i+ 1) ·min

ñ Hence, the probability of choosing an edge from the cut is at

most min /c(E) ≤ 2/(n− i+ 1).

n− i+ 1 is the number of nodes in graph
Gn−i+1 = (Vn−i+1, En−i+1), the graph at the start of iteration i.

Analysis

What is the probability that we select an edge from A in

iteration i?
ñ Let min = cap(A,V \A) denote the capacity of a mincut.

ñ Let cap(v) be capacity of edges incident to vertex

v ∈ Vn−i+1.

ñ Clearly, cap(v) ≥min.

ñ Summing cap(v) over all edges gives

2c(E) = 2
∑
e∈E

c(e) =
∑
v∈V

cap(v) ≥ (n− i+ 1) ·min

ñ Hence, the probability of choosing an edge from the cut is at

most min /c(E) ≤ 2/(n− i+ 1).

n− i+ 1 is the number of nodes in graph
Gn−i+1 = (Vn−i+1, En−i+1), the graph at the start of iteration i.

Analysis

What is the probability that we select an edge from A in

iteration i?
ñ Let min = cap(A,V \A) denote the capacity of a mincut.

ñ Let cap(v) be capacity of edges incident to vertex

v ∈ Vn−i+1.

ñ Clearly, cap(v) ≥min.

ñ Summing cap(v) over all edges gives

2c(E) = 2
∑
e∈E

c(e) =
∑
v∈V

cap(v) ≥ (n− i+ 1) ·min

ñ Hence, the probability of choosing an edge from the cut is at

most min /c(E) ≤ 2/(n− i+ 1).

n− i+ 1 is the number of nodes in graph
Gn−i+1 = (Vn−i+1, En−i+1), the graph at the start of iteration i.

Analysis

The probability that we do not choose an edge from the cut in

iteration i is

1− 2
n− i+ 1

= n− i− 1
n− i+ 1

.

The probability that the cut is alive after iteration n− t (after

which t nodes are left) is at most

n−t∏

i=1

n− i− 1
n− i+ 1

= t(t − 1)
n(n− 1)

.

Choosing t = 2 gives that with probability 1/
(
n
2

)
the algorithm

computes a mincut.

Analysis

The probability that we do not choose an edge from the cut in

iteration i is

1− 2
n− i+ 1

= n− i− 1
n− i+ 1

.

The probability that the cut is alive after iteration n− t (after

which t nodes are left) is at most

n−t∏

i=1

n− i− 1
n− i+ 1

= t(t − 1)
n(n− 1)

.

Choosing t = 2 gives that with probability 1/
(
n
2

)
the algorithm

computes a mincut.

Analysis

The probability that we do not choose an edge from the cut in

iteration i is

1− 2
n− i+ 1

= n− i− 1
n− i+ 1

.

The probability that the cut is alive after iteration n− t (after

which t nodes are left) is at most

n−t∏

i=1

n− i− 1
n− i+ 1

= t(t − 1)
n(n− 1)

.

Choosing t = 2 gives that with probability 1/
(
n
2

)
the algorithm

computes a mincut.

Analysis

Repeating the algorithm c lnn
(
n
2

)
times

gives that the probability

that we are never successful is

(
1− 1

(n2)

)(n2)c lnn

≤
(
e−1/(n2)

)(n2)c lnn

≤ n−c ,

where we used 1− x ≤ e−x.

Theorem 7

The randomized mincut algorithm computes an optimal cut with

high probability. The total running time is O(n4 logn).

Analysis

Repeating the algorithm c lnn
(
n
2

)
times gives that the probability

that we are never successful is

(
1− 1

(n2)

)(n2)c lnn

≤
(
e−1/(n2)

)(n2)c lnn

≤ n−c ,

where we used 1− x ≤ e−x.

Theorem 7

The randomized mincut algorithm computes an optimal cut with

high probability. The total running time is O(n4 logn).

Analysis

Repeating the algorithm c lnn
(
n
2

)
times gives that the probability

that we are never successful is

(
1− 1

(n2)

)(n2)c lnn

≤
(
e−1/(n2)

)(n2)c lnn

≤ n−c ,

where we used 1− x ≤ e−x.

Theorem 7

The randomized mincut algorithm computes an optimal cut with

high probability. The total running time is O(n4 logn).

Analysis

Repeating the algorithm c lnn
(
n
2

)
times gives that the probability

that we are never successful is

(
1− 1

(n2)

)(n2)c lnn

≤
(
e−1/(n2)

)(n2)c lnn

≤ n−c ,

where we used 1− x ≤ e−x.

Theorem 7

The randomized mincut algorithm computes an optimal cut with

high probability. The total running time is O(n4 logn).

Analysis

Repeating the algorithm c lnn
(
n
2

)
times gives that the probability

that we are never successful is

(
1− 1

(n2)

)(n2)c lnn

≤
(
e−1/(n2)

)(n2)c lnn

≤ n−c ,

where we used 1− x ≤ e−x.

Theorem 7

The randomized mincut algorithm computes an optimal cut with

high probability. The total running time is O(n4 logn).

Analysis

Repeating the algorithm c lnn
(
n
2

)
times gives that the probability

that we are never successful is

(
1− 1

(n2)

)(n2)c lnn

≤
(
e−1/(n2)

)(n2)c lnn

≤ n−c ,

where we used 1− x ≤ e−x.

Theorem 7

The randomized mincut algorithm computes an optimal cut with

high probability. The total running time is O(n4 logn).

Improved Algorithm

Algorithm 2 RecursiveMincut(G = (V , E, c))
1: for i = 1→ n−n/√2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: if |V | = 2 return cut-value;

5: cuta ← RecursiveMincut(G);

6: cutb ← RecursiveMincut(G);

7: return min{cuta, cutb}

Running time:

ñ T(n) = 2T
(n√

2

)
+O(n2)

ñ This gives T(n) = O(n2 logn).

Note that the above implementation
only works for very special values of n.

Improved Algorithm

Algorithm 2 RecursiveMincut(G = (V , E, c))
1: for i = 1→ n−n/√2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: if |V | = 2 return cut-value;

5: cuta ← RecursiveMincut(G);

6: cutb ← RecursiveMincut(G);

7: return min{cuta, cutb}

Running time:

ñ T(n) = 2T
(n√

2

)
+O(n2)

ñ This gives T(n) = O(n2 logn).

Note that the above implementation
only works for very special values of n.

Improved Algorithm

Algorithm 2 RecursiveMincut(G = (V , E, c))
1: for i = 1→ n−n/√2 do

2: choose e ∈ E randomly with probability c(e)/c(E)
3: G ← G/e
4: if |V | = 2 return cut-value;

5: cuta ← RecursiveMincut(G);

6: cutb ← RecursiveMincut(G);

7: return min{cuta, cutb}

Running time:

ñ T(n) = 2T
(n√

2

)
+O(n2)

ñ This gives T(n) = O(n2 logn). Note that the above implementation
only works for very special values of n.

Probability of Success

The probability of not contracting an edge from the mincut during

one iteration through the for-loop is at least

t(t − 1)
n(n− 1)

≥ t2

n2 =
1
2
,

as t = n√
2
.

Probability of Success

Gn

G n√
2

n

n√
2

(n√
2

)2

(n√
2

)3

(n√
2

)4

size of
rest graph

recursion
tree

We can estimate the success probability by using the following

game on the recursion tree. Delete every edge with probability 1
2 .

If in the end you have a path from the root to at least one leaf

node you are successful.

Probability of Success

Gn

G n√
2

n

n√
2

(n√
2

)2

(n√
2

)3

(n√
2

)4

size of
rest graph

recursion
tree

The probability of con-
tracting an edge of the
mincut during these it-
erations is 1

2 .

We can estimate the success probability by using the following

game on the recursion tree. Delete every edge with probability 1
2 .

If in the end you have a path from the root to at least one leaf

node you are successful.

Probability of Success

Gn

G n√
2

n

n√
2

(n√
2

)2

(n√
2

)3

(n√
2

)4

size of
rest graph

recursion
tree

The probability of con-
tracting an edge of the
mincut during these it-
erations is 1

2 .

We can estimate the success probability by using the following

game on the recursion tree. Delete every edge with probability 1
2 .

If in the end you have a path from the root to at least one leaf

node you are successful.

Probability of Success

Let for an edge e in the recursion tree, h(e) denote the height

(distance to leaf level) of the parent-node of e (end-point that is

higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of

e to a descendant leaf, after we randomly deleted edges. Note

that an edge can only be alive if it hasn’t been deleted.

Lemma 8

The probability that an edge e is alive is at least 1
h(e)+1 .

Probability of Success

Let for an edge e in the recursion tree, h(e) denote the height

(distance to leaf level) of the parent-node of e (end-point that is

higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of

e to a descendant leaf, after we randomly deleted edges. Note

that an edge can only be alive if it hasn’t been deleted.

Lemma 8

The probability that an edge e is alive is at least 1
h(e)+1 .

Probability of Success

Let for an edge e in the recursion tree, h(e) denote the height

(distance to leaf level) of the parent-node of e (end-point that is

higher up in the tree). Let h denote the height of the root node.

Call an edge e alive if there exists a path from the parent-node of

e to a descendant leaf, after we randomly deleted edges. Note

that an edge can only be alive if it hasn’t been deleted.

Lemma 8

The probability that an edge e is alive is at least 1
h(e)+1 .

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd

= 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Pr[A∨ B] = Pr[A]+ Pr[B]− Pr[A∧ B]

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Pr[A∨ B] = Pr[A]+ Pr[B]− Pr[A∧ B]

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Pr[A∨ B] = Pr[A]+ Pr[B]− Pr[A∧ B]

x−x2/2 is monotonically
increasing for x ∈ [0,1]

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2

≥ 1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Pr[A∨ B] = Pr[A]+ Pr[B]− Pr[A∧ B]

x−x2/2 is monotonically
increasing for x ∈ [0,1]

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Pr[A∨ B] = Pr[A]+ Pr[B]− Pr[A∧ B]

x−x2/2 is monotonically
increasing for x ∈ [0,1]

Probability of Success

Proof.

ñ An edge e with h(e) = 1 is alive if and only if it is not deleted.

Hence, it is alive with proability at least 1
2 .

ñ Let pd be the probability that an edge e with h(e) = d is

alive. For d > 1 this happens for edge e = {c,p} if it is not

deleted and if one of the child-edges connecting to c is alive.

ñ This happens with probability

pd = 1
2

(
2pd−1 − p2

d−1

)

= pd−1 −
p2
d−1

2

≥ 1
d
− 1

2d2 ≥
1
d
− 1
d(d+ 1)

= 1
d+ 1

.

Pr[A∨ B] = Pr[A]+ Pr[B]− Pr[A∧ B]

x−x2/2 is monotonically
increasing for x ∈ [0,1]

15 Global Mincut

Lemma 9

One run of the algorithm can be performed in time O(n2 logn)
and has a success probability of Ω(1

logn).

Doing Θ(log2n) runs gives that the algorithm succeeds with high

probability. The total running time is O(n2 log3n).

15 Global Mincut

Lemma 9

One run of the algorithm can be performed in time O(n2 logn)
and has a success probability of Ω(1

logn).

Doing Θ(log2n) runs gives that the algorithm succeeds with high

probability. The total running time is O(n2 log3n).

	Global Mincut

