4 Modelling Issues

What do you measure?

- Memory requirement
- Running time
- Number of comparisons
- Number of multiplications
- Number of hard-disc accesses
- Program size
- Power consumption
- ▶ ...

Ernst Mayr, Harald Räcke	22. Feb. 2020 3/13

4 Modelling Issues

Input length

The theoretical bounds are usually given by a function $f : \mathbb{N} \to \mathbb{N}$ that maps the input length to the running time (or storage space, comparisons, multiplications, program size etc.).

The input length may e.g. be

- the size of the input (number of bits)
- the number of arguments

Example 1

Suppose *n* numbers from the interval $\{1, ..., N\}$ have to be sorted. In this case we usually say that the input length is *n* instead of e.g. $n \log N$, which would be the number of bits required to encode the input.

22. Feb. 2020 5/13

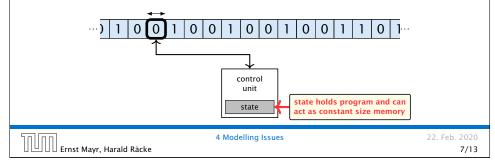
4 Modelling Issues

How do you measure?

- Implementing and testing on representative inputs
 - How do you choose your inputs?
 - May be very time-consuming.
 - Very reliable results if done correctly.
 - Results only hold for a specific machine and for a specific set of inputs.
- Theoretical analysis in a specific model of computation.
 - Gives asymptotic bounds like "this algorithm always runs in time $\mathcal{O}(n^2)$ ".
 - Typically focuses on the worst case.
 - Can give lower bounds like "any comparison-based sorting algorithm needs at least Ω(n log n) comparisons in the worst case".

Ernst Mayr, Harald Räcke	4 Modelling Issues	22. Feb. 2020
🛛 💾 🛛 🖓 Ernst Mayr, Harald Räcke		4/13

Model of Computation


How to measure performance

- Calculate running time and storage space etc. on a simplified, idealized model of computation, e.g. Random Access Machine (RAM), Turing Machine (TM), ...
- 2. Calculate number of certain basic operations: comparisons, multiplications, harddisc accesses, ...

Version 2. is often easier, but focusing on one type of operation makes it more difficult to obtain meaningful results.

Turing Machine

- Very simple model of computation.
- Only the "current" memory location can be altered.
- Very good model for discussing computability, or polynomial vs. exponential time.
- Some simple problems like recognizing whether input is of the form xx, where x is a string, have guadratic lower bound.
- \Rightarrow Not a good model for developing efficient algorithms.

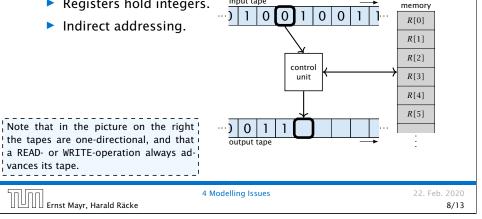
Random Access Machine (RAM)

Operations

- input operations (input tape $\rightarrow R[i]$)
 - READ i
- output operations ($R[i] \rightarrow$ output tape)
 - ▶ WRITE *i*
- register-register transfers
 - \triangleright R[j] := R[i]
 - \triangleright R[i] := 4
- indirect addressing
 - \triangleright R[i] := R[R[i]]loads the content of the R[i]-th register into the *j*-th register
 - ▶ R[R[i]] := R[j]

loads the content of the *j*-th into the R[i]-th register

□□□□ Ernst Mayr, Harald Räcke


9/13

Random Access Machine (RAM)

- Input tape and output tape (sequences of zeros and ones; unbounded length).
- Memory unit: infinite but countable number of registers $R[0], R[1], R[2], \ldots$

input tape

Registers hold integers.

Random Access Machine (RAM)			
Operations			
 branching (including loops) based on comparisons jump x jumps to position x in the program; sets instruction counter to x; reads the next operation to perform from register R[x] jumpz x R[i] jump to x if R[i] = 0 if not the instruction counter is increased by 1; jumpi i jump to R[i] (indirect jump); 			
\blacktriangleright arithmetic instructions: +, -, ×, /			
 R[i] := R[j] + R[k]; R[i] := -R[k]; The jump-directives are very close to the jump-instructions contained in the assembler language of real machines. 			
4 Modelling Issues 22. Feb. 2020 Ernst Mayr, Harald Räcke 10/13			

Model of Computation

uniform cost model Every operation takes time 1.

- logarithmic cost model The cost depends on the content of memory cells:
 - The time for a step is equal to the largest operand involved;
 - The storage space of a register is equal to the length (in bits) of the largest value ever stored in it.

Bounded word RAM model: cost is uniform but the largest value stored in a register may not exceed 2^w , where usually $w = \log_2 n$.

> The latter model is quite realistic as the word-size of a standard computer that handles a problem of size nmust be at least $\log_2 n$ as otherwise the computer could either not store the problem instance or not address all ! its memory.

٦n	Π	Π	Ernst Mavr. Harald Räcke
	Ш	Ш	Ernst Mayr, Harald Räcke

4 Modelling Issues

11/13

There are different types of complexity bounds:

best-case complexity:

 $C_{\rm bc}(n) := \min\{C(x) \mid |x| = n\}$

Usually easy to analyze, but not very meaningful.

worst-case complexity:

 $C_{wc}(n) := \max\{C(x) \mid |x| = n\}$

Usually moderately easy to analyze; sometimes too pessimistic.

average case complexity:

$$C_{\text{avg}}(n) := \frac{1}{|I_n|} \sum_{|x|=n} C(x)$$

more general: probability meas

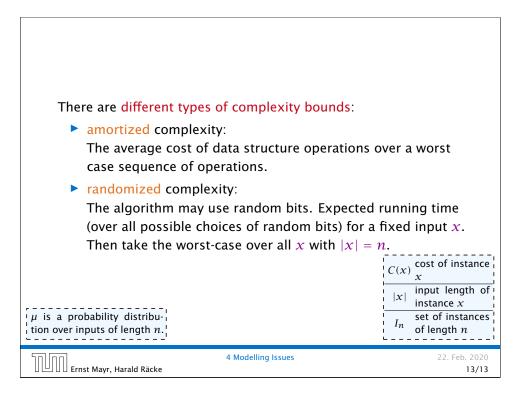
 $C_{\mathrm{avg}}(n) :=$

 μ is a probability distribution over inputs of length n.

│└┘」 └│ └ Ernst Mayr, Harald Räcke

	C(x) x
ility measure μ	x input length of instance x
_	instance x
$n) := \sum \mu(x) \cdot C(x)$	I_n set of instances
$x \in I_n$	n^{n} of length n
	L
4 Modelling Issues	22. Feb. 2020

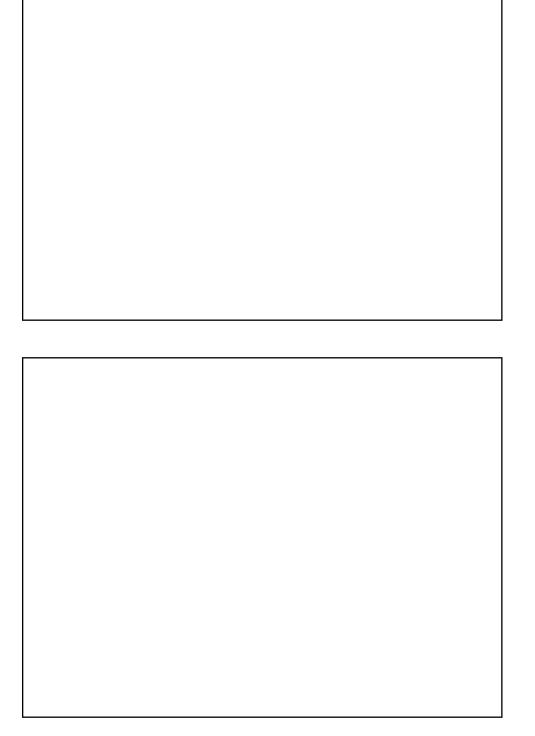
C(x) cost of instance


13/13

4 Modelling Issues

Example 2

	Algorithm 1 RepeatedSquaring (n)	
	1: $r \leftarrow 2$;	
	2: for $i = 1 → n$ do	
	3: $r \leftarrow r^2$	
	2: for $i = 1 \rightarrow n$ do 3: $r \leftarrow r^2$ 4: return r	
► L ►	ng time (for Line 3): uniform model: n steps ogarithmic model: $2+3+5+\cdots+(1+2^n) = 2^{n+1}-1+n = \Theta(2^n)$	
space	e requirement:	
Ν ι	uniform model: $\mathcal{O}(1)$	
	ogarithmic model: $\mathcal{O}(2^n)$	
Ernst Mayr, H	4 Modelling Issues arald Räcke	22. Feb


12/13

4 Modelling Issues

Bibliogra	ohy					
[MS08]	Kurt Mehlhorn, Peter Sanders: <i>Algorithms and Data Structures — The Basic Toolbox</i> , Springer, 2008					
[CLRS90]	Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.), McGraw-Hill, 2009					
Chapter 2	Chapter 2.1 and 2.2 of [MS08] and Chapter 2 of [CLRS90] are relevant for this section.					
		22.5.4.2020				
	4 Modelling Issues Aayr, Harald Räcke	22. Feb. 2020 14/13				

