8 Priority Queues

A Priority Queue *S* is a dynamic set data structure that supports the following operations:

- S. build(x₁,..., x_n): Creates a data-structure that contains just the elements x₁,..., x_n.
- S. insert(x): Adds element x to the data-structure.
- ► element S. minimum(): Returns an element x ∈ S with minimum key-value key[x].
- element S. delete-min(): Deletes the element with minimum key-value from S and returns it.
- boolean S. is-empty(): Returns true if the data-structure is empty and false otherwise.

Sometimes we also have

• S. merge(S'): $S := S \cup S'$; $S' := \emptyset$.

Ernst Mayr, Harald Räcke	
🛛 🕒 🛛 🖉 Ernst Mayr, Harald Räcke	

2. Feb. 2020 64/120

Dijkstra's Shortest Path Algorithm Algorithm 1 Shortest-Path($G = (V, E, d), s \in V$) 1: **Input:** weighted graph G = (V, E, d); start vertex s; 2: **Output:** key-field of every node contains distance from *s*; 3: S.build(); // build empty priority queue 4: for all $v \in V \setminus \{s\}$ do v.key $\leftarrow \infty$; 5: 6: $h_v \leftarrow S.insert(v);$ 7: s.key \leftarrow 0; S.insert(s); 8: while *S*.is-empty() = false do $v \leftarrow S.delete-min();$ 9: 10: for all $x \in V$ s.t. $(v, x) \in E$ do 11: if x. key > v. key +d(v, x) then S.decrease-key(h_x , v. key + d(v, x)); 12: x.key $\leftarrow v$.key + d(v, x); 13:

8 Priority Queues 22. Feb. 2020 Ernst Mayr, Harald Räcke 66/120

8 Priority Queues

An addressable Priority Queue also supports:

- handle S. insert(x): Adds element x to the data-structure, and returns a handle to the object for future reference.
- **S. delete(***h***)**: Deletes element specified through handle *h*.
- S. decrease-key(h, k): Decreases the key of the element specified by handle h to k. Assumes that the key is at least k before the operation.

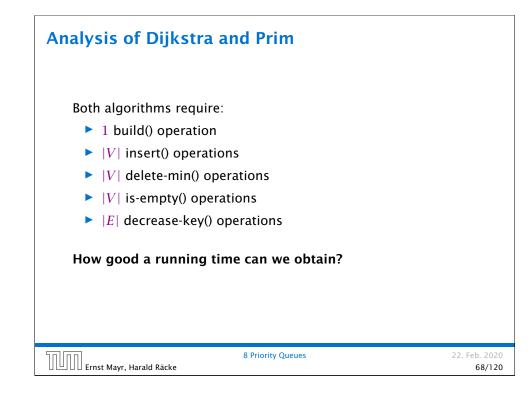
Ernst Mayr, Harald Räcke

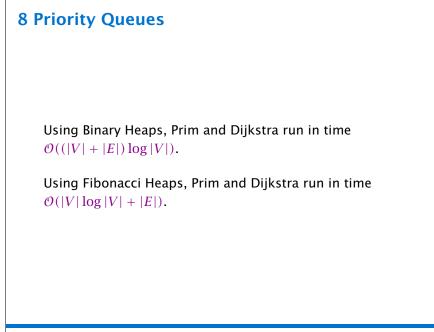
8 Priority Queues

٩lg	orithm 2 Prim-MST($G = (V, E, d), s \in V$)
1:	Input: weighted graph $G = (V, E, d)$; start vertex s;
2:	Output: pred-fields encode MST;
3:	S.build(); // build empty priority queue
4:	for all $v \in V \setminus \{s\}$ do
5:	$v. \text{key} \leftarrow \infty;$
5:	$h_v \leftarrow S.insert(v);$
7:	s . key $\leftarrow 0$; S .insert (s) ;
3:	while S.is-empty() = false do
9:	$v \leftarrow S.delete-min();$
0:	for all $x \in V$ s.t. $\{v, x\} \in E$ do
1:	if x . key > $d(v, x)$ then
2:	S.decrease-key(h_x , $d(v, x)$);
3:	x . key $\leftarrow d(v, x);$
4:	x.pred $\leftarrow v$;

Ernst Mavr. Harald Räcke

8 Priority Queues





8 Priority Queues

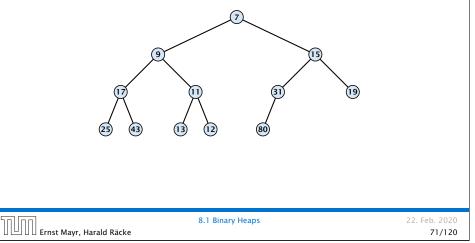
Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	п	$n \log n$	$n \log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	п	$n \log n$	$\log n$	1

Note that most applications use **build**() only to create an empty heap which then costs time 1.

* Fibonacci heaps only give an amortized guarantee. * The standard version of binary heaps is not addressable. Hence, it does not support a delete.

8.1 Binary Heaps

- Nearly complete binary tree; only the last level is not full, and this one is filled from left to right.
- Heap property: A node's key is not larger than the key of one of its children.



8 Priority Queues

22. Feb. 2020 70/120

Binary Heaps

Operations:

- **minimum()**: return the root-element. Time O(1).
- **is-empty():** check whether root-pointer is null. Time O(1).

Ernst Mayr, Harald Räcke	8.1 Binary Heaps	22. Feb. 2020 72/120

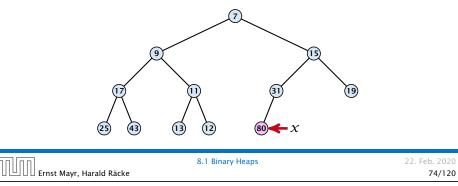
8.1 Binary Heaps

Maintain a pointer to the last element *x*.

► We can compute the successor of x (last element when an element is inserted) in time O(log n).

go up until the last edge used was a left edge. go right; go left until you reach a null-pointer.

if you hit the root on the way up, go to the leftmost element; insert a new element as a left child;



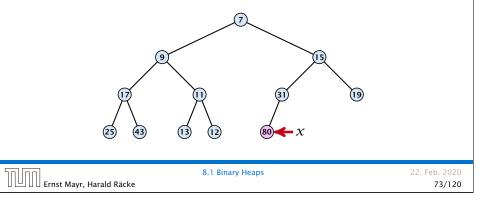
8.1 Binary Heaps

Maintain a pointer to the last element *x*.

► We can compute the predecessor of x (last element when x is deleted) in time O(log n).

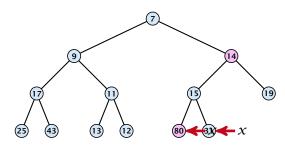
go up until the last edge used was a right edge. go left; go right until you reach a leaf

if you hit the root on the way up, go to the rightmost element



Insert

- **1.** Insert element at successor of *x*.
- 2. Exchange with parent until heap property is fulfilled.

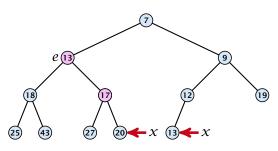


Note that an exchange can either be done by moving the data or by changing pointers. The latter method leads to an addressable priority queue.

Ernst Mayr, Harald Räcke

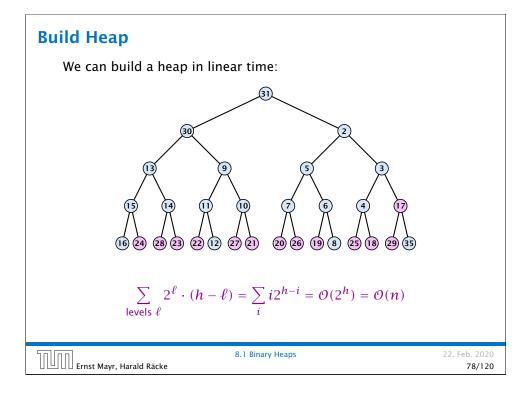
Delete

- **1.** Exchange the element to be deleted with the element *e* pointed to by *x*.
- **2.** Restore the heap-property for the element *e*.



At its new position *e* may either travel up or down in the tree (but not both directions).

החת	8.1 Binary Heaps	22. Feb. 2020
Ernst Mayr, Harald Räcke		76/120

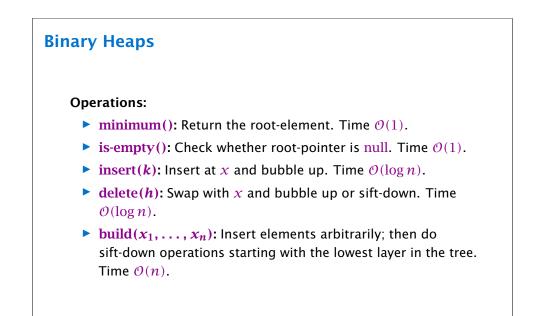


Binary Heaps

Operations:

- **minimum():** return the root-element. Time O(1).
- **is-empty():** check whether root-pointer is null. Time O(1).
- insert(k): insert at successor of x and bubble up. Time O(log n).
- delete(h): swap with x and bubble up or sift-down. Time O(log n).

Ernst Mayr, Harald Räcke	8.1 Binary Heaps	22. Feb. 2020 77/120
		,



Binary Heaps

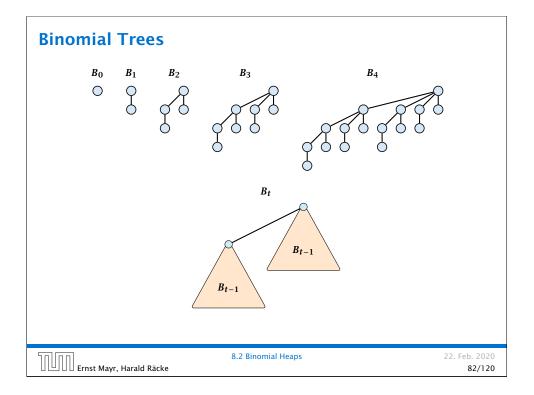
The standard implementation of binary heaps is via arrays. Let $A[0, \ldots, n-1]$ be an array

- The parent of *i*-th element is at position $\lfloor \frac{i-1}{2} \rfloor$.
- The left child of *i*-th element is at position 2i + 1.
- The right child of *i*-th element is at position 2i + 2.

Finding the successor of x is much easier than in the description on the previous slide. Simply increase or decrease x.

The resulting binary heap is not addressable. The elements don't maintain their positions and therefore there are no stable handles.

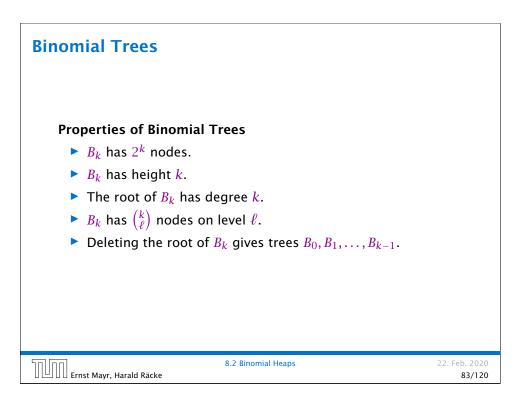
החוחר	8.1 Binary Heaps	22. Feb. 2020
Ernst Mayr, Harald Räcke		80/120

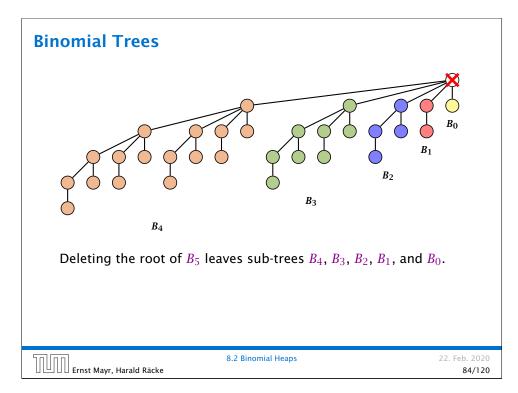


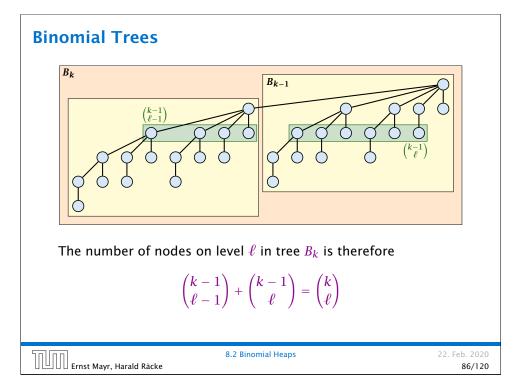
8.2 Binomial Heaps

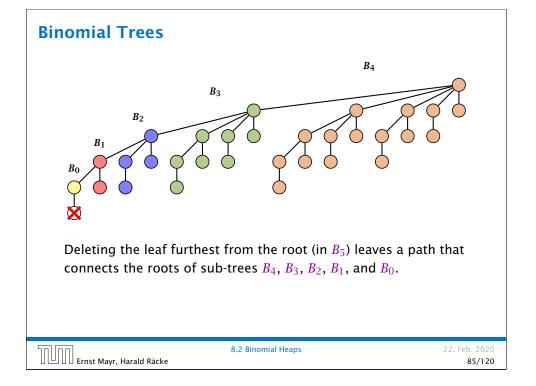
Operation	Binary Heap	BST	Binomial Heap	Fibonacci Heap*
build	n	$n\log n$	$n\log n$	n
minimum	1	$\log n$	$\log n$	1
is-empty	1	1	1	1
insert	$\log n$	$\log n$	$\log n$	1
delete	$\log n^{**}$	$\log n$	$\log n$	$\log n$
delete-min	$\log n$	$\log n$	$\log n$	$\log n$
decrease-key	$\log n$	$\log n$	$\log n$	1
merge	n	$n \log n$	log n	1

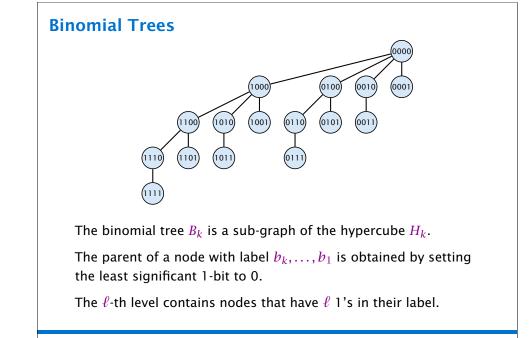
החוחר	8.2 Binomial Heaps	22. Feb. 2020
🛛 💾 🛛 🖉 Ernst Mayr, Harald Räcke		81/120







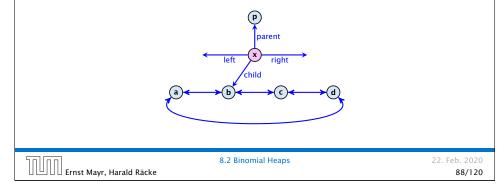


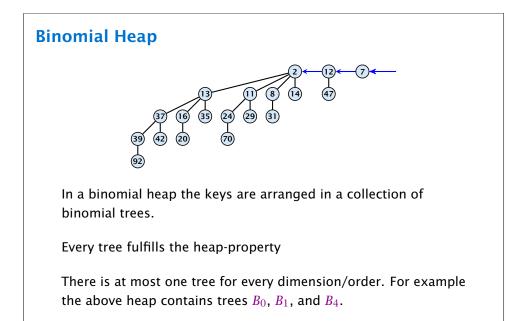


8.2 Binomial Heaps

How do we implement trees with non-constant degree?

- The children of a node are arranged in a circular linked list.
- A child-pointer points to an arbitrary node within the list.
- A parent-pointer points to the parent node.
- Pointers x.left and x.right point to the left and right sibling of x (if x does not have siblings then x.left = x.right = x).





8.2 Binomial Heaps • Given a pointer to a node *x* we can splice out the sub-tree rooted at x in constant time. \blacktriangleright We can add a child-tree T to a node x in constant time if we are given a pointer to x and a pointer to the root of T. Ernst Mayr, Harald Räcke 8.2 Binomial Heaps

Binomial Heap: Merge

Given the number n of keys to be stored in a binomial heap we can deduce the binomial trees that will be contained in the collection.

Let B_{k_1} , B_{k_2} , B_{k_3} , $k_i < k_{i+1}$ denote the binomial trees in the collection and recall that every tree may be contained at most once.

Then $n = \sum_{i} 2^{k_i}$ must hold. But since the k_i are all distinct this means that the k_i define the non-zero bit-positions in the binary representation of n.

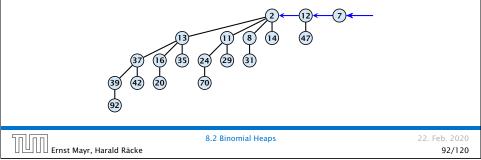
8.2 Binomial Heaps

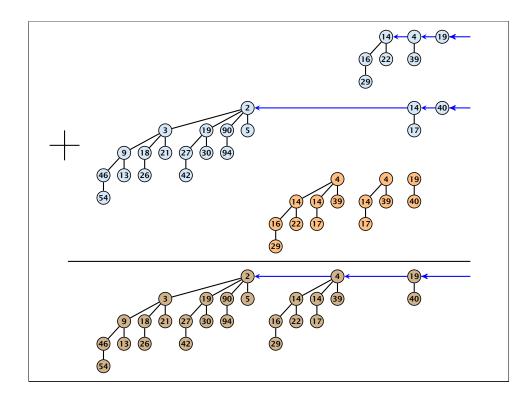
90/120

Binomial Heap

Properties of a heap with *n* keys:

- Let $n = b_d b_{d-1}, \ldots, b_0$ denote binary representation of n.
- The heap contains tree B_i iff $b_i = 1$.
- Hence, at most $\lfloor \log n \rfloor + 1$ trees.
- The minimum must be contained in one of the roots.
- The height of the largest tree is at most $\lfloor \log n \rfloor$.
- The trees are stored in a single-linked list; ordered by dimension/size.





Binomial Heap: Merge

The merge-operation is instrumental for binomial heaps.

A merge is easy if we have two heaps with different binomial trees. We can simply merge the tree-lists.

Note that we do not just do a concatenation as we want to keep the trees in the list sorted according to size.

Otherwise, we cannot do this because the merged heap is not allowed to contain two trees of the same order.

Merging two trees of the same size: Add the tree with larger root-value as a child to the other tree.

For more trees the technique is analogous to binary addition.

```
    8.2 Binomial Heaps
    22. Feb. 2020

    Ernst Mayr, Harald Räcke
    93/120
```

8.2 Binomial Heaps

S_1 . merge(S_2):

- Analogous to binary addition.
- Time is proportional to the number of trees in both heaps.
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

All other operations can be reduced to merge().

S. insert(x):

- Create a new heap S' that contains just the element x.
- **Execute** S.merge(S').
- Time: $\mathcal{O}(\log n)$.

הח הר	8.2 Binomial Heaps	22. Feb. 2020
🛛 🛄 🛛 Ernst Mayr, Harald Räcke		96/120

8.2 Binomial Heaps

S. delete-min():

- Find the minimum key-value among all roots.
- Remove the corresponding tree T_{\min} from the heap.
- Create a new heap S' that contains the trees obtained from T_{\min} after deleting the root (note that these are just $O(\log n)$ trees).
- Compute S.merge(S').
- Time: $\mathcal{O}(\log n)$.

8.2 Binomial Heaps

- S. minimum():
 - Find the minimum key-value among all roots.
 - ▶ Time: $O(\log n)$.

8.2 Binomial Heaps

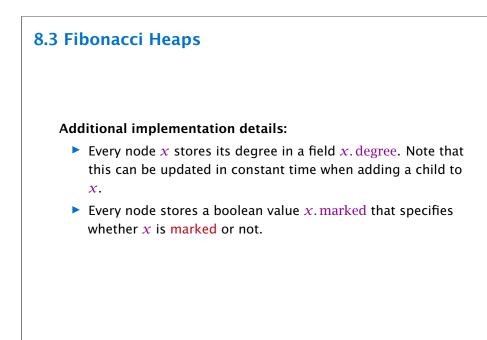
- *S*. decrease-key(handle *h*):
 - Decrease the key of the element pointed to by h.
 - Bubble the element up in the tree until the heap property is fulfilled.
 - Time: $O(\log n)$ since the trees have height $O(\log n)$.

8.2 Binomial Heaps

S. delete(handle *h*):

- **Execute** *S*. decrease-key($h, -\infty$).
- **Execute** *S*.delete-min().
- ▶ Time: $O(\log n)$.

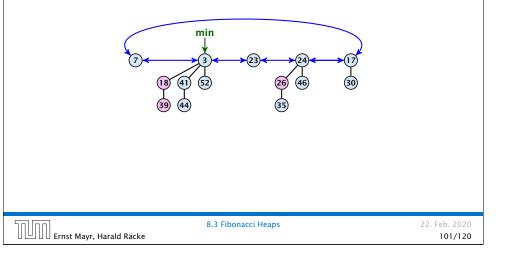
Ernst Mayr, Harald Räcke	8.2 Binomial Heaps	22. Feb. 2020 100/120



8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

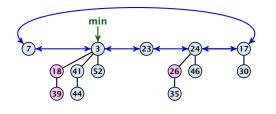


8.3 Fibonacci Heaps

Ernst Mayr, Harald Räcke

The potential function:

- t(S) denotes the number of trees in the heap.
- m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.



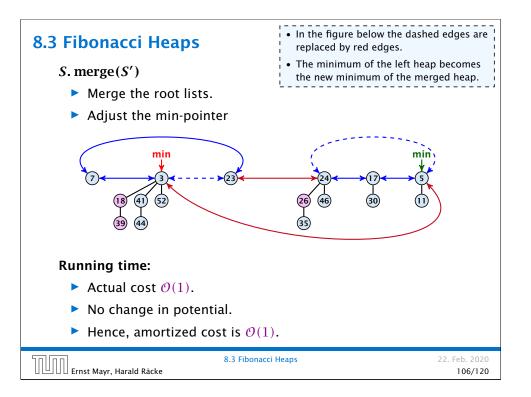
The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

8.3 Fibonacci Heaps Ernst Mayr, Harald Räcke 22. Feb. 2020 102/120

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).

To make this more explicit we use *c* to denote the amount of work that a unit of potential can pay for.

8.3 Fibonacci Heaps Ernst Mayr, Harald Räcke

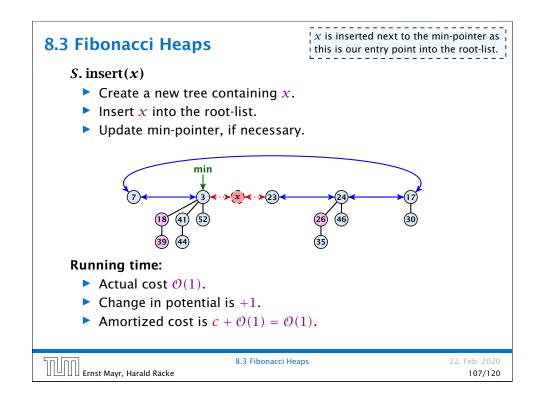


8.3 Fibonacci Heaps

S. minimum()

- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Amortized cost $\mathcal{O}(1)$.

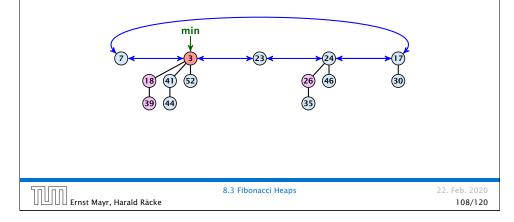
החוהה	8.3 Fibonacci Heaps	22. Feb. 2020
🛛 🛄 🛛 🖉 Ernst Mayr, Harald Räcke		105/120

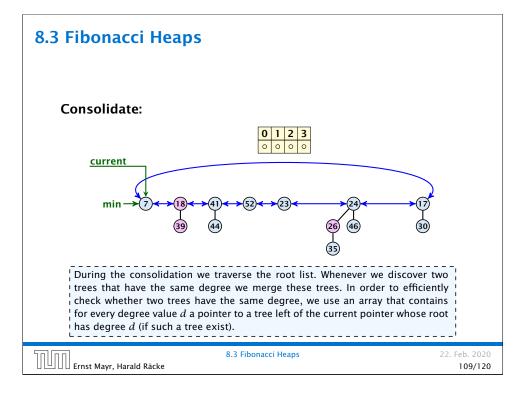


 $D(\min)$ is the number of children of the node that stores the minimum.

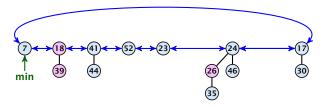
S. delete-min(x)

- ► Delete minimum; add child-trees to heap; time: D(min) · O(1).
- Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.



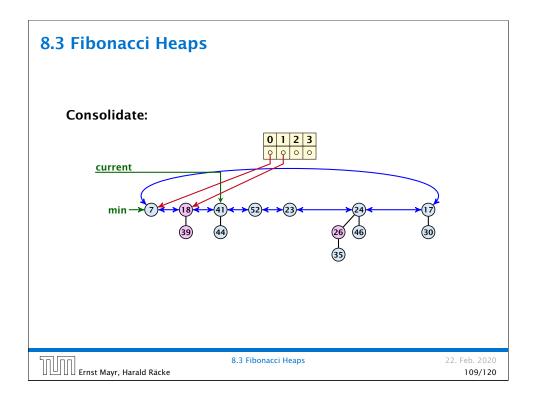


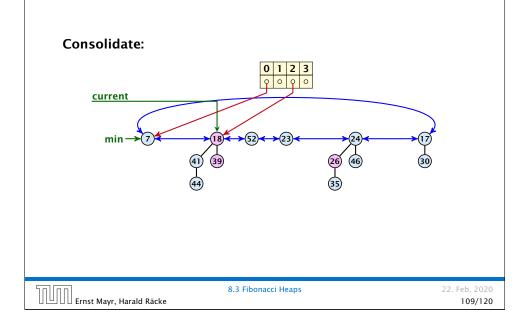
8.3 Fibonacci Heaps *D*(min) is the number of children of the node that stores the minimum. *S*. delete-min(*x*) Delete minimum; add child-trees to heap; time: *D*(min) ⋅ *O*(1). Update min-pointer; time: (*t* + *D*(min)) ⋅ *O*(1).

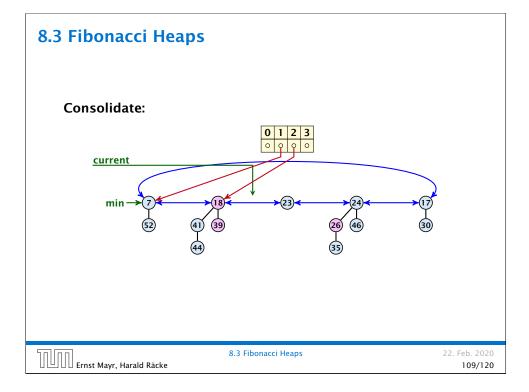


• Consolidate root-list so that no roots have the same degree. Time $t \cdot O(1)$ (see next slide).

הח הר	8.3 Fibonacci Heaps	22. Feb. 2020
Ernst Mayr, Harald Räcke		108/120

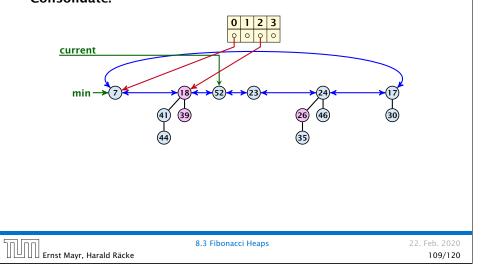


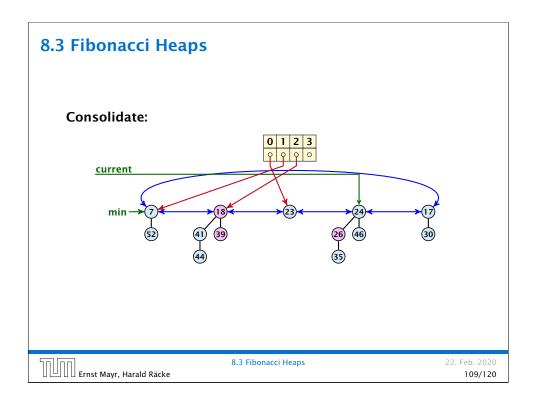


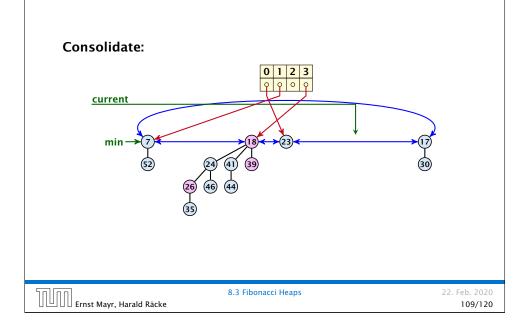


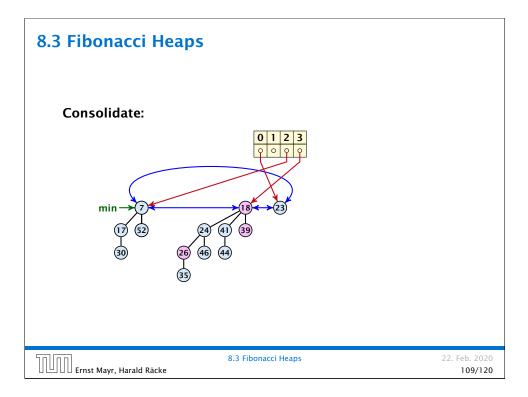
8.3 Fibonacci Heaps

Consolidate:

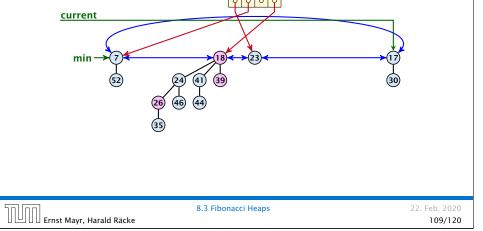








8.3 Fibonacci Heaps Consolidate:



8.3 Fibonacci Heaps

t and t' denote the number of trees before and after the delete-min() operation, respectively. D_n is an upper bound on the degree (i.e., number of children) of a tree node.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

- ▶ $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (\mathbf{t} \mathbf{D}_n 1)$ from the potential decrease.
- The amortized cost is

 $c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$

$$\leq (c_1+c)D_n+(c_1-c)t+c \leq 2c(D_n+1) \leq \mathcal{O}(D_n)$$

for $\boldsymbol{\mathcal{C}} \geq \mathcal{C}_1$.

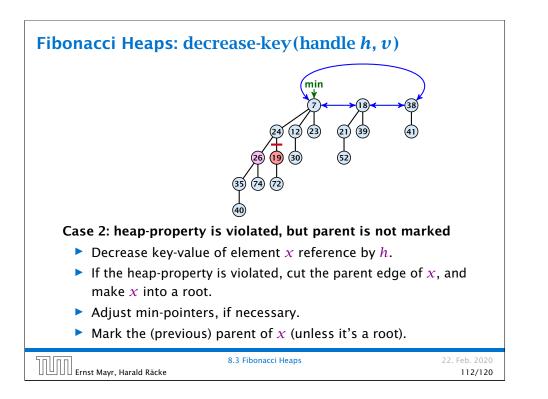
Л

Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps
🛄 🛛 🖉 Ernst Mayr, Harald Räcke	

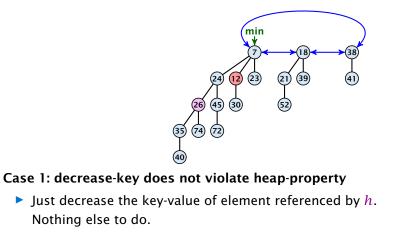
If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

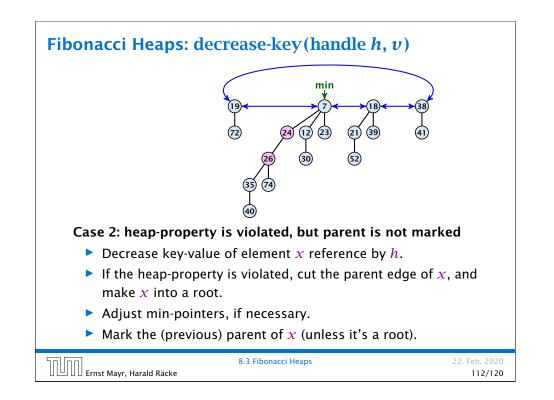
Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps	22. Feb. 2020 111/120



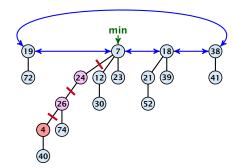
Fibonacci Heaps: decrease-key(handle h, v)



החהר	8.3 Fibonacci Heaps	22. Feb. 2020
Ernst Mayr, Harald Räcke		112/120



Fibonacci Heaps: decrease-key(handle h, v)



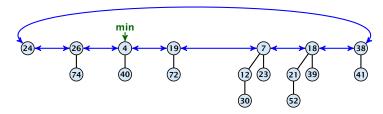
Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- \blacktriangleright Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps	22. Feb. 2020
UUU Ernst Mayr, Harald Räcke		112/120

Fibonacci Heaps: decrease-key(handle h, v) Case 3: heap-property is violated, and parent is marked **\triangleright** Decrease key-value of element *x* reference by *h*. • Cut the parent edge of x, and make x into a root. Adjust min-pointers, if necessary. Marking a node can be viewed as a first step towards becoming a root. Execute the following: The first time x loses a child it is $p \leftarrow \text{parent}[x];$ marked; the second time it loses a child it is made into a root. while (p is marked) $pp \leftarrow parent[p];$ cut of p; make it into a root; unmark it; $p \leftarrow pp$; if p is unmarked and not a root mark it; 8.3 Fibonacci Heaps □□□ Ernst Mayr, Harald Räcke 113/120

Fibonacci Heaps: decrease-key(handle h, v)



Case 3: heap-property is violated, and parent is marked

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

החוחר	8.3 Fibonacci Heaps	22. Feb. 2020
UUUU Ernst Mayr, Harald Räcke		112/120

Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:

- Constant cost for decreasing the value.
- \triangleright Constant cost for each of ℓ cuts.
- Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

- $t' = t + \ell$, as every cut creates one new root.
- $m' \leq m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.

8.3 Fibonacci Heaps

- $\blacktriangleright \Delta \Phi \leq \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2 = O(1)$

trees before and after operation. m and m': number of marked nodes before and after operation.

t and t': number of

||U||||| Ernst Mayr, Harald Räcke

if $C \geq C_2$.

Delete node

H. delete(x):

- decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D_n)$

- $\mathcal{O}(1)$ for decrease-key.
- $\mathcal{O}(D_n)$ for delete-min.

החוחר	8.3 Fibonacci Heaps	22. Feb. 2020
∐∐∐∐ Ernst Mayr, Harald Räcke		115/120

8.3 Fibonacci Heaps

Proof

- When y_i was linked to x, at least y₁,..., y_{i-1} were already linked to x.
- ► Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- Therefore, degree(y_i) $\ge i 2$.

8.3 Fibonacci Heaps

Lemma 1

Let x be a node with degree k and let y_1, \ldots, y_k denote the children of x in the order that they were linked to x. Then

 $degree(\mathcal{Y}_i) \ge \begin{cases} 0 & if \ i = 1\\ i - 2 & if \ i > 1 \end{cases}$

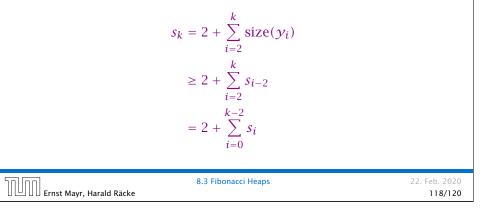
	The marking process is very important for the proof of this lemma. It ensures that a node can have lost at most one child since the last time it became a non-root node. When losing a first child the node gets marked; when losing the second child it is cut from the parent and made into a root.	
Ernst Mayr, H	8.3 Fibonacci Heaps arald Räcke	22

116/120

8.3 Fibonacci Heaps

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- s_k monotonically increases with k
- ▶ $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.



8.3 Fibonacci Heaps

 $\phi = \frac{1}{2}(1 + \sqrt{5})$ denotes the *golden ratio*. Note that $\phi^2 = 1 + \phi$.

Definition 2

Consider the following non-standard Fibonacci type sequence:

$$F_{k} = \begin{cases} 1 & \text{if } k = 0\\ 2 & \text{if } k = 1\\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

1. $F_k \ge \phi^k$. 2. For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

Ernst Mayr, Harald Räcke	8.3 Fibonacci Heaps	22. Feb. 2020
🛛 🛄 🖓 Ernst Mayr, Harald Räcke		119/120

```
k=0:

1 = F_0 \ge \Phi^0 = 1

k=1:

2 = F_1 \ge \Phi^1 \approx 1.61

\Phi^2

k-2,k-1 \rightarrow k:

F_k = F_{k-1} + F_{k-2} \ge \Phi^{k-1} + \Phi^{k-2} = \Phi^{k-2}(\Phi + 1) = \Phi^k
```

k=2:
$$3 = F_2 = 2 + 1 = 2 + F_0$$

k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$

החוחר	8.3 Fibonacci Heaps	22. Feb. 2020
🛛 🛄 🗍 🖉 Ernst Mayr, Harald Räcke		120/120

Priority	Queues	
Bibliogra	phy	
[CLRS90]	Thomas H. Cormen, Charles E. Leiserson, Ron L. Rivest, Clifford Stein: Introduction to algorithms (3rd ed.), MIT Press and McGraw-Hill, 2009	
[MS08]	Kurt Mehlhorn, Peter Sanders: <i>Algorithms and Data Structures — The Basic Toolbox</i> , Springer, 2008	
	aps are covered in [CLRS90] in combination with the heapsort algorithm in Chapter 6. Fi eaps are covered in detail in Chapter 19. Problem 19-2 in this chapter introduces Binomial	
	in [MS08] covers Priority Queues. Chapter 6.2.2 discusses Fibonacci heaps. Binomial heaps with in Exercise 6.11.	
		22 5.1 2020
	8.3 Fibonacci Heaps Mayr, Harald Räcke	22. Feb. 2020 121/120

