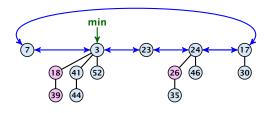

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.



Additional implementation details:

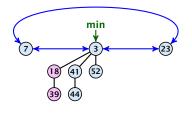
- Every node x stores its degree in a field x. degree. Note that this can be updated in constant time when adding a child to x.
- Every node stores a boolean value x. marked that specifies whether x is marked or not.

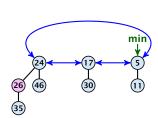
The potential function:

- \blacktriangleright t(S) denotes the number of trees in the heap.
- \blacktriangleright m(S) denotes the number of marked nodes.
- We use the potential function $\Phi(S) = t(S) + 2m(S)$.

The potential is $\Phi(S) = 5 + 2 \cdot 3 = 11$.

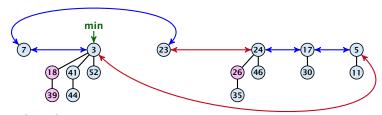
We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen "big enough" (to take care of the constants that occur).


To make this more explicit we use \boldsymbol{c} to denote the amount of work that a unit of potential can pay for.


S. minimum()

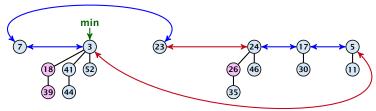
- Access through the min-pointer.
- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- Amortized cost $\mathcal{O}(1)$.

S. merge(S')


- Merge the root lists.
- Adjust the min-pointer

S. merge(S')

- Merge the root lists.
- Adjust the min-pointer

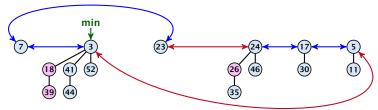


Running time:

Actual cost $\mathcal{O}(1)$.

S. merge(S')

- Merge the root lists.
- Adjust the min-pointer

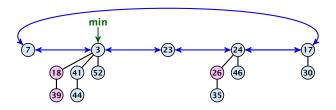


Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.

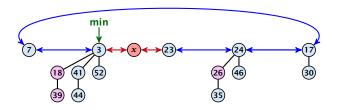
S. merge(S')

- Merge the root lists.
- Adjust the min-pointer

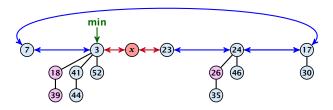


Running time:

- Actual cost $\mathcal{O}(1)$.
- No change in potential.
- ▶ Hence, amortized cost is $\mathcal{O}(1)$.

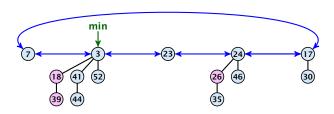

S.insert(x)

- Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.

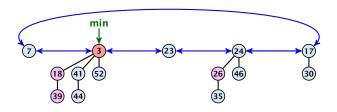

S.insert(x)

- ightharpoonup Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.

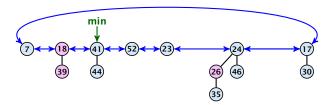
S. insert(x)


- ightharpoonup Create a new tree containing x.
- Insert x into the root-list.
- Update min-pointer, if necessary.

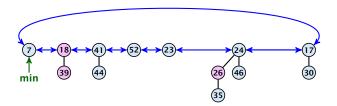
Running time:


- Actual cost $\mathcal{O}(1)$.
- \triangleright Change in potential is +1.
- ▶ Amortized cost is c + O(1) = O(1).

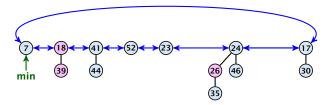
S. delete-min(x)


S. delete-min(x)

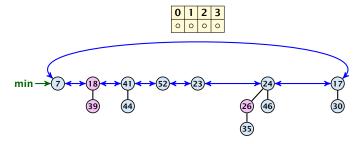
▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.

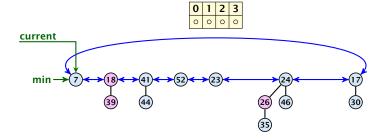

S. delete-min(x)

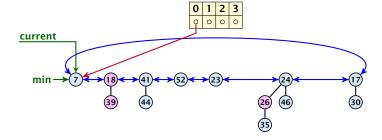
- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot O(1)$.

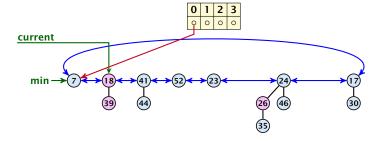

S. delete-min(x)

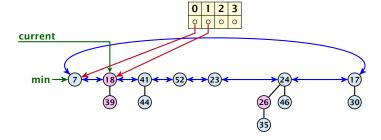
- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.

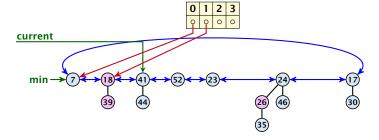


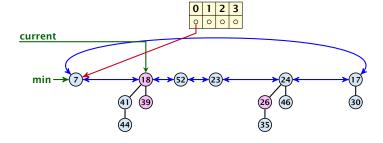

S. delete-min(x)

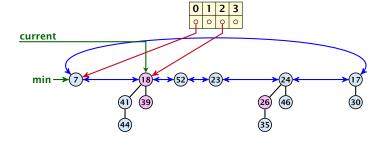

- ▶ Delete minimum; add child-trees to heap; time: $D(\min) \cdot \mathcal{O}(1)$.
- ▶ Update min-pointer; time: $(t + D(\min)) \cdot \mathcal{O}(1)$.

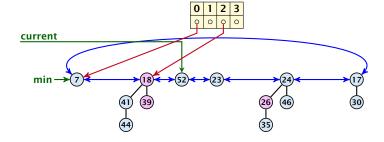


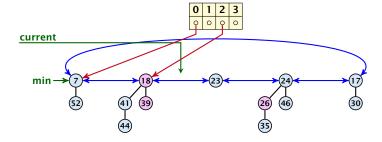

Consolidate root-list so that no roots have the same degree. Time $t\cdot\mathcal{O}(1)$ (see next slide).

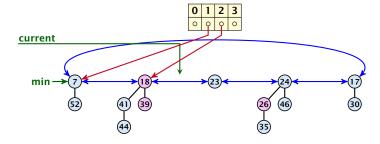


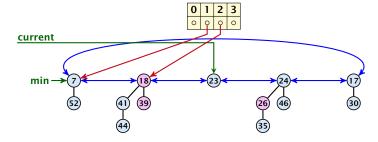


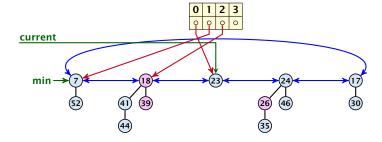


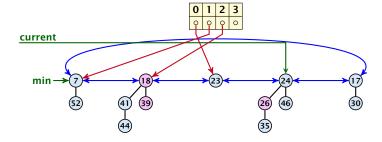


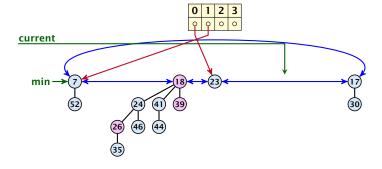


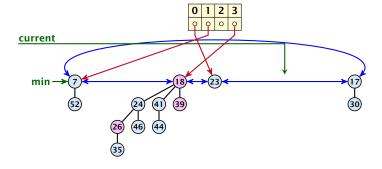


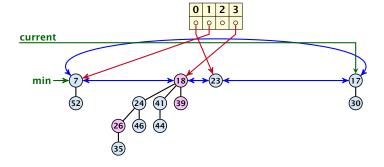


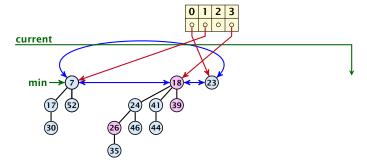


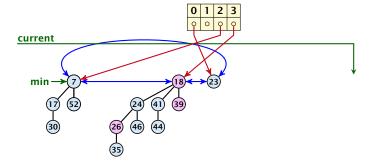


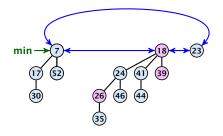












Consolidate:

Actual cost for delete-min()

At most $D_n + t$ elements in root-list before consolidate.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()

▶ $t' \le D_n + 1$ as degrees are different after consolidating.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- $ightharpoonup t' \leq D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

 $\leq (c_1 + c)D_n + (c_1 - c)t + c$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

$$\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1)$$

Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $\mathbf{c} \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

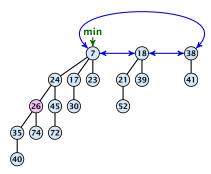
$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

$$\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$$

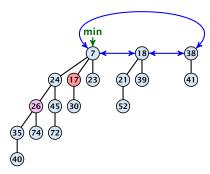
Actual cost for delete-min()

- At most $D_n + t$ elements in root-list before consolidate.
- Actual cost for a delete-min is at most $\mathcal{O}(1) \cdot (D_n + t)$. Hence, there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

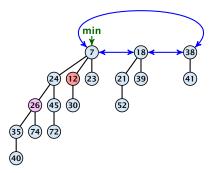
- ▶ $t' \le D_n + 1$ as degrees are different after consolidating.
- ► Therefore $\Delta \Phi \leq D_n + 1 t$;
- We can pay $c \cdot (t D_n 1)$ from the potential decrease.
- The amortized cost is

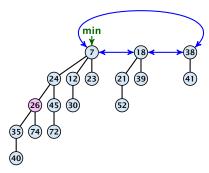

$$c_1 \cdot (D_n + t) - c \cdot (t - D_n - 1)$$

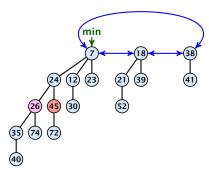
$$\leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \mathcal{O}(D_n)$$
for $c \geq c_1$.

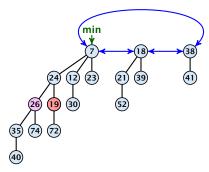

If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

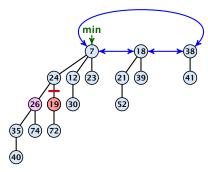
If the input trees of the consolidation procedure are binomial trees (for example only singleton vertices) then the output will be a set of distinct binomial trees, and, hence, the Fibonacci heap will be (more or less) a Binomial heap right after the consolidation.

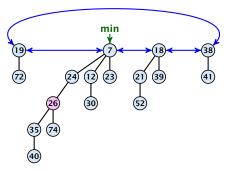

If we do not have delete or decrease-key operations then $D_n \leq \log n$.

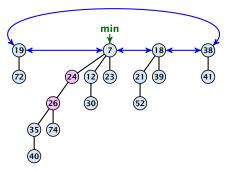

Case 1: decrease-key does not violate heap-property


Case 1: decrease-key does not violate heap-property

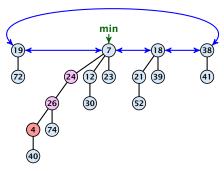

Case 1: decrease-key does not violate heap-property

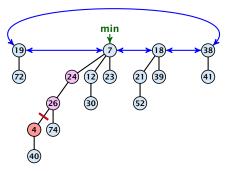

Case 1: decrease-key does not violate heap-property

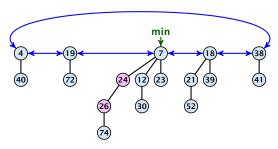

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

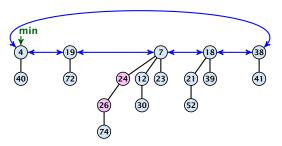

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

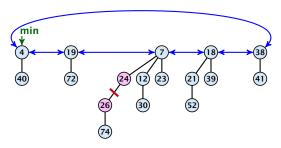
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

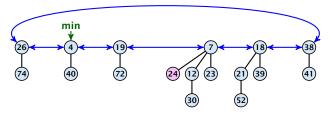

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

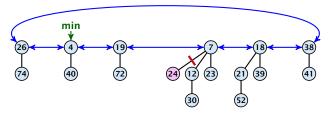

- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it's a root).

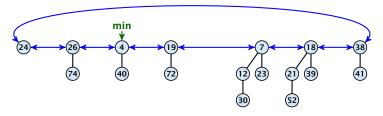

- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.


- Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.


- Decrease key-value of element x reference by h.
- ightharpoonup Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.


- ▶ Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.


- ▶ Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.


- ▶ Decrease key-value of element x reference by h.
- ightharpoonup Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

- ▶ Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

- ▶ Decrease key-value of element x reference by h.
- Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

- ▶ Decrease key-value of element x reference by h.
- Let the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

- ightharpoonup Decrease key-value of element x reference by h.
- \triangleright Cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Execute the following:

Actual cost:

Actual cost:

Constant cost for decreasing the value.

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

Amortized cost:

 $t' = t + \ell$, as every cut creates one new root.

Actual cost:

- Constant cost for decreasing the value.
- ▶ Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- ► $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $t' = t + \ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- ► $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1)+c(4-\ell)$$

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $ightharpoonup t'=t+\ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- ► $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2$$

Actual cost:

- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- ▶ Hence, cost is at most $c_2 \cdot (\ell + 1)$, for some constant c_2 .

- $ightharpoonup t'=t+\ell$, as every cut creates one new root.
- ▶ $m' \le m (\ell 1) + 1 = m \ell + 2$, since all but the first cut unmarks a node; the last cut may mark a node.
- $\Delta \Phi \le \ell + 2(-\ell + 2) = 4 \ell$
- Amortized cost is at most

$$c_2(\ell+1) + c(4-\ell) \le (c_2-c)\ell + 4c + c_2 = \mathcal{O}(1),$$

if $c \ge c_2.$

Delete node

H. delete(x):

- ▶ decrease value of x to $-\infty$.
- delete-min.

Amortized cost: $\mathcal{O}(D_n)$

- $ightharpoonup \mathcal{O}(1)$ for decrease-key.
- \triangleright $\mathcal{O}(D_n)$ for delete-min.

Lemma 1

Let x be a node with degree k and let y_1, \ldots, y_k denote the children of x in the order that they were linked to x. Then

$$degree(y_i) \ge \begin{cases} 0 & if i = 1\\ i - 2 & if i > 1 \end{cases}$$

Proof

▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.

Proof

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.

Proof

- ▶ When y_i was linked to x, at least $y_1, ..., y_{i-1}$ were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- \triangleright Since, then y_i has lost at most one child.

Proof

- When y_i was linked to x, at least y_1, \ldots, y_{i-1} were already linked to x.
- ▶ Hence, at this time $degree(x) \ge i 1$, and therefore also $degree(y_i) \ge i 1$ as the algorithm links nodes of equal degree only.
- Since, then y_i has lost at most one child.
- ▶ Therefore, degree(y_i) ≥ i 2.

Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- $ightharpoonup s_k$ monotonically increases with k

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \operatorname{size}(y_i)$$
$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

- Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.
- \triangleright s_k monotonically increases with k
- $ightharpoonup s_0 = 1 \text{ and } s_1 = 2.$

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

$$s_k = 2 + \sum_{i=2}^k \text{size}(y_i)$$

$$\geq 2 + \sum_{i=2}^k s_{i-2}$$

$$= 2 + \sum_{i=0}^{k-2} s_i$$

Definition 2

Consider the following non-standard Fibonacci type sequence:

$$F_k = \begin{cases} 1 & \text{if } k = 0 \\ 2 & \text{if } k = 1 \\ F_{k-1} + F_{k-2} & \text{if } k \ge 2 \end{cases}$$

Facts:

- 1. $F_k \geq \phi^k$.
- **2.** For $k \ge 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \ge F_k \ge \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.

k=0:
$$1 = F_0 \ge \Phi^0 = 1$$

k=1: $2 = F_1 \ge \Phi^1 \approx 1$

k=1:
$$2 = F_1 \ge \Phi^1 \approx 1.61$$

k-2,k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} \ge \Phi^{k-1} + \Phi^{k-2} = \Phi^{k-2}(\Phi + 1) = \Phi^k$

$$2 = F_1 \ge \Phi^1 \approx$$

$$k-1 \to k \quad F_k = F_{k-1} + F_k$$

$$2 = F_1 \ge \Phi^1 \approx 1$$

-1 \rightarrow k: $F_k = F_{k-1} + F_{k-1}$

$$2 = F_1 \ge \Phi^{\perp} \approx 1$$

 $1 \rightarrow k$: $F_k = F_{k-1} + F_{k-1}$

k:
$$F_k = F_{k-1} + F_{k-1}$$

$$-1 + F_{k-2} \ge \Phi$$

$$T_{k-2} \ge \Phi^{\kappa}$$

$$\geq \Phi^{\kappa^-}$$

k=2: $3 = F_2 = 2 + 1 = 2 + F_0$ k-1 \rightarrow k: $F_k = F_{k-1} + F_{k-2} = 2 + \sum_{i=0}^{k-3} F_i + F_{k-2} = 2 + \sum_{i=0}^{k-2} F_i$

$$\geq \Phi^{k-1}$$

$$\geq \Phi^{k-1}$$

$$\geq \Phi^{\kappa-}$$

$$\geq \Phi^{k-1}$$

$$\geq \Phi^{k-1}$$

$$> \Phi^{k-1}$$