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Lemma 1
Leta >1,b =1 and € > 0 denote constants. Consider the
recurrence n
T(n) = aT(E) +f(n) .
Case 1.

If f(n) = O(M'°8 D =€) then T(n) = O(n'o8r ),

Case 2.
If f(n) = ©(n'°8@ 1ogk n) then T(n) = O (o2 a10gk*! n),
k >0.

Case 3.
If f(n) = Q(nlo8 (D +¢) and for sufficiently large n
af(y) <cf(n) for some constant c <1 then T(n) = O(f(n)).



6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b?, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.
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Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
110110101 A
110000101100101]1] B
1011001000

This gives that two n-bit integers can be added in time O(n).



Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).



Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 x101(1)




Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 x101(1)
10001




Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 XxX10(1)1
10001




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 XxX10(1)1
10001
0




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 XxX10(1)1
10001
100010




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X101 1
10001
100010




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
10001 X101 1
10001
100010
00




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X101 1
10001
100010
00000O0O




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X011
10001
100010
00000O0O




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X011
10001
100010
00000O0O
00O




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X011
10001
100010
00000O0O
100010O00O




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010
00000O0O
100010O00O




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011




Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011

Time requirement:



Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011

Time requirement:

» Computing intermediate results: O(nm).



Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
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Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n: O((m + n)m) = O(nm).



Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.



Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B ‘x‘ A




Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

b,,_1 bo‘x‘an_l ao




Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

bn—l b b% b,,_1 for bo‘ X ‘an—l a% a%_l ao

2z




Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B; By ‘ X ‘ Aq Ao




Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B; By ‘ X ‘ Aq Ao

Then it holds that

A=A;-27 +Apand B =B - 27 + By
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A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B; By ‘ X ‘ Aq Ao

Then it holds that

A=A;-27 +Apand B =B - 27 + By

Hence,

A-B=A1B; - 2" + (AlB() + AogB1) - 2% + AogBg
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Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

We get the following recurrence:

T(n) = 4T<g> +oMm) .
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Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT () + f(n).
» Case 1: f(n) = O(nlosra-¢) T(n) = O(nlosr a)

> Case 2: f(n) = O(n'°%21ogkn) T(n) = O(n'ogr a1ogk*

> Case 3: f(n :Q(nlogbm) T(n) =06(f(n))

Inour case a =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

We get a running time of ©(n?) for our algorithm.

=> Not better then the “school method”.

17’1)



Example: Multiplying Two Integers

We can use the following identity to compute Z;:



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy
= (Ap + A1) - (Bo +B1) —A1B1 — AgBo



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12
—tr— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12
—tr— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bp)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,Bg+B1) —Z> — Z
8: return Zp - 2" + Z; - 2% & Zo




Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12

—t— ——
= (Ap + A1) - (Bo +B1) — A1B1 — AgBo

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bp)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,Bg+B1) —Z> — Z
8: return Zp - 2" + Z; - 2% & Zo

o)



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A,
4: split B into By and B,
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo




Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B,
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo




Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo




Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,
Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Zp — mult(A, By) T(%)
6: Zo — mult(Ag, By)
7: Z1 — mult(Ag+ A1,Bg+B1) —Z> — Z
8: return Zp - 2" + Z; - 2% & Zo




Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq,B;)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

o(1)
O(1)
O(n)
O(n)
T(%)
T(%)



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq,B;)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

o(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%) +0(n)



Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq,B;)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

o(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%) +0(n)
O(n)



Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .



Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT () + f(n).

> Case 1: f( n) O (nlospa-c) T(n) = O(nlosra)

> Case 2: f(n) = O(n'°ealogkn) T(n) = O(n'o8 4 1ogk™!

> Case 3: f(n) = Q(nlogb a+te) T(n) =0(f(n))

n)



Example: Multiplying Two Integers

We get the following recurrence:
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Master Theorem: Recurrence: T[n] = aT () + f(n).
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Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%> +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
> Case 1: f(n) = O(nlogra—c) T(n) = O(nlosra)

> Case 2: f(n) = O(n'°ealogkn) T(n) = O(n'o8 4 1ogk™!

> Case 3: f(n) = Q(nlogb a+te) T(n) =0(f(n))

Again we are in Case 1. We get a running time of
O(n'°g23) ~ @(n'9).

A huge improvement over the “school method”.
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