6.2 Master Theorem

Lemma 1
Leta >1,b =1 and € > 0 denote constants. Consider the
recurrence n
T(n) = aT(E) +f(n) .
Case 1.

If f(n) = O(M'°8 D =€) then T(n) = O(n'o8r),

Case 2.
If f(n) = ©(n'°8@ 1ogk n) then T(n) = O (o2 a10gk*! n),
k >0.

Case 3.
If f(n) = Q(nlo8 (D +¢) and for sufficiently large n
af(y) <cf(n) for some constant c <1 then T(n) = O(f(n)).

6.2 Master Theorem

We prove the Master Theorem for the case that n is of the form
b?, and we assume that the non-recursive case occurs for
problem size 1 and incurs cost 1.

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

®

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

The Recursion Tree

The running time of a recursive algorithm can be visualized by a
recursion tree:

6.2 Master Theorem

This gives
log, n—1 n
T(n) =nlosra 4 Z alf<ﬁ> .

i=0

Case 1. Now suppose that f(n) < cn'o8ra—€,

Case 1. Now suppose that f(n) < cn'o8ra—€,

T(n) - nl()gb a

Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1

T(n) — nlogra = Z a‘f(%)

i=0

Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1 n

_ logpa _ i A

T(n)—nosr = Z “f<bi)
i=0

log, n—1

n
<c > al<—.
i=0 b

Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1 n
_ logpa _ i A
T(n)—nosr = Z af(bi)
i=0
log, n—1

log, a—€
i(n
i
C g a (bi)
i=0

IA

p-idogpa—e) — bei(blogb u)—i = peig—i

Case 1. Now suppose that f(n) < cn'o8ra—€,
T(n)-nlosrad = 3 a‘f(ﬁ,)

- n log, a—€
“(3:)

In
M

log, n—1

p-idogpa—e) — bei(blogb u)—i = peig—i

— cnlogra-e Z (be)i

i=0

Case 1. Now suppose that f(n) < cn'o8ra—€,

_ ' "
T —nlowd =3 atf(r)
i=0
logy n-1 logy, a—e
i n b
<c > a i
i=0
log, n—1)
-8 _ i —i i —i log, a—€ e\t
p-illogya-e) _ peiplogpay—i - peig—i | = cp b Z (b)
i=0

5 k+1_1
zl 04" = =1

Case 1. Now suppose that f(n) < cn'o8ra—€,

_ ' "
T —nlowd =3 atf(r)
i=0
logy n-1 logy, a—e
i n b
<c > a i
i=0
log, n—1)
-8 _ i —i i —i log, a—€ e\t
p-illogya-e) _ peiplogpay—i - peig—i | = cp b Z (b)
i=0

q-1

zl 0‘1' e O Cnloghafe(belogbn _ 1)/(b6 _

1)

Case 1. Now suppose that f(n) < cn'o8ra—€,

_ ' "
T —nlowd =3 atf(r)
i=0
logy n-1 logy, a—e
i n b
<c > a i
i=0
log, n—1)
-8 _ i —i i —i log, a—€ e\t
p-illogya-e) _ peiplogpay—i - peig—i | = cp b Z (b)
i=0

q-1

= cnlo8a=€(n€ —1)/(b° - 1)

zl 0‘1' _gla1 | Cnloghafe(belogbn _ 1)/(b6 _

1)

Case 1. Now suppose that f(n) < cn'o8ra—€,

T(n) —

p-idogpa—e) — bei(blogb u)—i —

log, n—1 n
logpa _ ig Y
Wt = 2 alf (bi)
i=0
log, n—1 log, a—e
i n b
<c > a i
i=0
logp n—1)
peig-i| = cnlogra—c Z (be)!

i=0

zli(:o qi =

e O Cnloghafe(belogbn _ 1)/(b6 -1)

q-1
= cnlo8a=€(n€ —1)/(b¢ - 1)

ﬁnlogb“(ne - 1)/(7’16)

Case 1. Now suppose that f(n) < cn'o8ra—€,

T(n) —

p-ilogya—e) — bei(blogb u)—i = peig—i

Hence,

log, n—1 n
logya _ il 2
went =), alf (bi)
i=0
log, n—1 log, a—e
i n Zb
<c > a i
i=0
log, n—1)
— cnlogra—c Z (be)l
i=0

zli(:o qi =

e O Cnloghafe(belogbn _ 1)/(b6 -1)

T(n) < (

be -1

q-1
= cnlo8a=€(n€ —1)/(b¢ - 1)

_ ﬁnlogb“(ng - 1)/(7’16)

R

Case 1. Now suppose that f(n) < cn'o8ra—€,

log, n—1

; n
T —nlowd =3 atf(r)
i=0
logy n-1 logy, a—e
i n b
<c > a i
i=0
log, n—1)
-8 _ i —i i —i log, a—€ e\t
p-illogya-e) _ peiplogpay—i - peig—i | = cp b Z (b)
i=0

_ Cnloghafe(belogbn _ 1)/(b6 -1)

= cnlo8a=€(n€ —1)/(b° - 1)

_ ﬁnlogba(ns - 1)/(7’16)

+ 1)nl°gb(“) > T(n) = O(nlosra),

Case 2. Now suppose that f(n) < cn'ogra,

Case 2. Now suppose that f(n) < cn'ogra,

T(n) — nlosra

Case 2. Now suppose that f(n) < cn'ogra,

log, n—1

T(n) — nlogra = Z a‘f(%)

i=0

Case 2. Now suppose that f(n) < cn'ogra,

log, n—1

T(n) — nlogra = Z aif(%)

i=0
log, n—1

<c > ai<

i=0

Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
_ . logpa _ i i
T(n)-n = Z af(l.)
i=0
log, n—1 n log, a
a | ——
> al(R

i=0

IA
o

=cnlogra X

Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
_ . logpa _ i i
T(n)-n = Z af(l.)
i=0
log, n—1 n log, a
a | ——
> al(R

i=0

IA
o

=cnlogra X

|
o
:b—'
(=}
Q9
ol
N
—
o
o
Ny
S

Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
T —nlowd =3 aif (1)
i=0
log, n—1 log, a
i n b
<c > a i
i=0
log, n—1
_Cnlogha Z 1
i=0

Hence,
T(n) = O(n'°% *log, n)

Case 2. Now suppose that f(n) < cn'ogra,

log, n—1 n
Tim) —noe =S aif (1)
i=0
log, n—1 1o
i n gpa
<c > a i
i=0
log, n—1
_Cnlogha Z 1

Hence,

T(n) = 08 log,n) |= T(n) = 08 logn).

Case 2. Now suppose that f(n) = cn'og 4,

Case 2. Now suppose that f(n) = cn'og 4,

T(n) — nlogra

Case 2. Now suppose that f(n) = cn'og 4,

log, n—1

T(n) — nlogra = Z a?(%)

i=0

Case 2. Now suppose that f(n) = cn'og 4,

log, n—1

i n
T —nloswe =Y atp(r)
i=0
logp n—1

log, a

i(n

e 3 al(y)
i=0

Case 2. Now suppose that f(n) = cn'og 4,

log, n—1 n
_ ,logpa _ i e
T(n) —nost= Z “f<bi)
i=0
logp n—1 log, a
>c > ai(ﬁ.)
7
i=0

log, n—-1

=cnlo®a X
i=0

Case 2. Now suppose that f(n) = cn'og 4,

log, n—1 n
_ alogpa _ i e
T(n)—n = Z “f<bi)
i=0
pn—1 log, a
i n Zb
>c > a i
i=0
logy n—1
=cnlo®a X
i=0
= cnlo%2og, n

Case 2. Now suppose that f(n) = cn'og 4,

log, n—1 n
T —nloswe =Y atp(r)
i=0
log, n—1 1o
i n gp a4
>c > a i
i=0
log, n—-1
=cnlo®a X

i=0
= cnlo%2og, n

Hence,
T(n) = Q(n'°% %log, n)

Case 2. Now suppose that f(n) = cn'og 4,

log, n—1 n
T —nloswe =Y atp(r)
i=0
logp n—1 log, a
i n Zb
>c > a i
i=0
logy n—1
=cnlo®a X
i=0
= cnl°® %log, n

Hence,

T(n) = Qn'%%log,n) |= T(n) = Q% 4logn).

Case 2. Now suppose that f(n) < cn'°8 % (log, (n))k.

Case 2. Now suppose that f(n) < cn'°8 4 (log, (n))k.

T(n) — nlogra

Case 2. Now suppose that f (1) < cn!°8 2 (log), (n))k.

log, n—-1

T -t~ 3 aif ()

i=0

Case 2. Now suppose that f (1) < cn!°8 2 (log), (n))k.

log, n—-1 n
_ ,logpa _ i s
T(n) —nosrad = Z af(bl.)
i=0
log, n—1

log, a k

(fn n

s 3 oal(y) - (om (5))
i=0

Case 2. Now suppose that f (1) < cn!°8 2 (log), (n))k.

log, n—-1 . n
T -t~ 3 aif ()
i=0
n-1

b 0\ logpa n\\ K
se 2 oal(g) - (tom (55))

i=0

Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

log, n—-1 n
_ logpa _ i e
T(n)—n = Z af(l.)
i=0
log, n—1

Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

log, n—-1

T(n)—nloga - ¥ lf(g)

i=0

i=0
-1 AR
n=bg:>€=logbn‘ = cnlosra Z (logb (ﬁ))
i=0

{-1
= Cnl(’gba Z (# _ l)k

i=0

Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

log, n—-1 n
_ ,logpa _ i n
Too - nme =5 a7
i=0
log, n—1

I\
o
&N
—
S
N————
<}
aQ
ol
Q
—
o
@]
oQ
Ny
/N

hi\\ K
n=bg:>€=logbn‘ = cnlosra Z (logb (ﬁ))

-1
= cnlo8rad Y (0 — i)k
i=0
¢
_ Cnlogb a Z ik
i=1

Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

aif(b.

log, n—1

T(n) — nlogra

n=bg:>€=logbn‘

log, n—-1

-3

i=0

IA
)

_ Cnlogh a i

{-1

= cnlogrd 3 (0 — i)k

i=0

= cnlo8b 4

£
lzik

i=1

~ 1 pk+1
Nkﬁ

Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

log, n—-1 n
_ ,logpa _ i n
Too - nme =5 a7
i=0
log, n—1

I\
o
&N
—
S
N————
<}
aQ
ol
Q
—
o
@]
oQ
Ny
/N

hi\\ K
n=bg:>€=logbn‘ = cnlosra Z (logb (ﬁ))

-1
= cnlo8rad Y (0 — i)k
i=0
¢
_ Cnlogb a Z ik
i=1

%nlogh a£k+ 1

I

Case 2. Now suppose that f(n) < cn'°® 4 (log), (n))k.

log, n—1
T(n) — nlogba _ Z alf(%)
i=0
log, n—1 0\ logpa n\K
¥ oafy) - (om(5))
i=0
0-1 hi\\ K
n=bg:>€=logbn} = cnlosra Z (logb (ﬁ))
i=0
£-1
= cnloBr® 3 (f — i)k
i=0
£
_ Cnlogbaz ik
i=1

IA

I

%nlogb agk+l ‘ > T(n) = On'°% a1ogk+ n).

Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/b'=1 > ng is still sufficiently large.

Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

T -nowe =5 at (1)

i=0

Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 . n
Ton) -l =3 aif ()
i=0
logp n—1
< > cifm) +0omosne)
i=0

Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

T(n)-nlosva = 3 a‘f(%)
i=0
logp n—1
< > cifm) +0omosne)
i=0
a<1:3%,q' = ll‘l_rlqﬂ < ﬁ

Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 n
i=0
log, n—1
< D cfm+omln
i=0
; n+ 1
a<1:3tea =00 <L | < f(n) + O(n'osr 4)

1-c

Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1 n
i=0
logp n—1
< > cifm) +omona)
i=0
g n+ 1
a<1:Shoai =55 < g A O(n'osr)

T(n) <0(f(n))

Case 3. Now suppose that f(n) > dn'°% 2+¢ and that for
sufficiently large n: af(n/b) < cf(n), forc < 1.

From this we get a' f(n/b') < c'f(n), where we assume that
n/bi=1 = ng is still sufficiently large.

log, n—1

T(n)-nlosva = 3 a‘f(%)
i=0
logp n—1
< > cifm) +0omosne)
i=0
qa£h¢=TTﬁﬁ'5£¢ﬂM+0mm”)

T(n) = O(f(n)) > T(n) = 0(f(n)).|

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010O0T1|1 B

L

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
1000100 1/1 B

0

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T0110110/1T A
100010O0|1|1T B

1

o

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T0110110/1T A
100010011 B

0|0

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010011 B

oo

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101101101 A
100010/0/11 B

0/0 0

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
100010011 B

" jooo

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1101100101 A
10001/0/011 B

1/oo0o0

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T01|{1/101 01 A
1000/1/)0011 B

1000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

1T1T01|{1/101 01 A
1000/1/0011 B

0/1000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:

110110101 A
100010011 B

' Jo1000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T0(1/TO0T1TO01 A
IOO]O]IOO]O]III B

0/01000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T0(1T1T01T01 A
IOOIO]IOO]O]III B

' Joo1000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
11T0(1T1T01T01 A
IOOOIO]IOO]O]III B

1001000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1/M11/011T01T01 A
IOOOIO]IOO]O]III B

/1001000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
1/M11/011T01T01 A
10000] 0] 1001 0] l]l B
11001000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
110110101 A
10000] 0] 100] 0] l]l B

/11001000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
110110101 A
110000101100101]1] B

011001000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
110110101 A
110000]01100]01111 B
Jo11001000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
110110101 A
110000]01100]01111 B
1011001000

Example: Multiplying Two Integers

Suppose we want to multiply two n-bit Integers, but our registers
can only perform operations on integers of constant size.

For this we first need to be able to add two integers A and B:
110110101 A
110000101100101]1] B
1011001000

This gives that two n-bit integers can be added in time O(n).

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 x101(1)

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 x101(1)
10001

Example: Multiplying Two Integers
Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 XxX10(1)1
10001

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 XxX10(1)1
10001
0

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 XxX10(1)1
10001
100010

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X101 1
10001
100010

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).
10001 X101 1
10001
100010
00

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X101 1
10001
100010
00000O0O

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X011
10001
100010
00000O0O

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X011
10001
100010
00000O0O
00O

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X011
10001
100010
00000O0O
100010O00O

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010
00000O0O
100010O00O

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011

Time requirement:

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011

Time requirement:

» Computing intermediate results: O(nm).

Example: Multiplying Two Integers

Suppose that we want to multiply an n-bit integer A and an m-bit
integer B (m < n).

10001 X1T0T11
10001
100010

00000O0O
100010O00O
10111011

Time requirement:
» Computing intermediate results: O(nm).
» Adding m numbers of length < 2n: O((m + n)m) = O(nm).

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B ‘x‘ A

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

b,,_1 bo‘x‘an_l ao

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

bn—l b b% b,,_1 for bo‘ X ‘an—l a% a%_l ao

2z

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B; By ‘ X ‘ Aq Ao

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B; By ‘ X ‘ Aq Ao

Then it holds that

A=A;-27 +Apand B =B - 27 + By

Example: Multiplying Two Integers

A recursive approach:
Suppose that integers A and B are of length n = 2%, for some k.

B; By ‘ X ‘ Aq Ao

Then it holds that

A=A;-27 +Apand B =B - 27 + By

Hence,

A-B=A1B; - 2" + (AlB() + AogB1) - 2% + AogBg

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, B1)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, B1)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

o(1)

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, B1)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

o(1)
o(1)

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, B1)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

o(1)
o(1)
O(n)

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

o(1)
o(1)
O(n)
On)

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

O(1)
O(1)
O(n)
On)
T(%)

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

(1)
O(1)
o(n)
o(n)
T(%)
2T (1) + O(n)

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

o)
o)
On)
On)
T(%)
2T (%) + O(n)
T(%)

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

o)
o)
On)
On)
T(%)
2T (%) + O(n)
T(%)
On)

Example: Multiplying Two Integers

Algorithm 3 mult(A, B)

. if |[A| = |B| = 1 then

return ag - bo

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(A;, By)

. Z1 < mult(Ay, Bg) + mult(Ag, By)
. Zo — mult(Ag, By)
creturn Zp - 2"+ 71 - 22 + Zp

We get the following recurrence:

T(n) = 4T<g> +oMm) .

o)
o)
On)
On)
T(%)
2T (%) + O(n)
T(%)
On)

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT () + f(n).
» Case 1: f(n) O (nlosy a—¢) T(n) = O(nlosr a)

> Case 2: f(n) = O(n'°%21ogkn) T(n) = O(n'ogr a1ogk+!

> Case 3: f(n) = Q(nlogb‘”e) T(n) =0(f(n))

n)

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

> Case 1: f(n) = O(nlogra-ec) T(n) = O(nlosra)
> Case 2: f(n) = O(n'°%21ogkn) T(n) = O(n'ogr a1ogk+!
> Case 3: f(n :Q(nlong) T(n) =0(f(n))

Inour case a =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

n)

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT(%) + f(n).

> Case 1: f(n) = O(nlogra-e) T(n) = O(n'osr4)
> Case 2: f(n) = O(n'°%a1logkn) T(n) = O(n'ogralogk*! n)
> Case 3: f(n) :Q(nlogw+€) T(n) =0(f(n))

Inour case a = 4, b = 2, and f(n) = O(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

We get a running time of ©(n?) for our algorithm.

Example: Multiplying Two Integers

Master Theorem: Recurrence: T[n] = aT () + f(n).
» Case 1: f(n) = O(nlosra-¢) T(n) = O(nlosr a)

> Case 2: f(n) = O(n'°%21ogkn) T(n) = O(n'ogr a1ogk*

> Case 3: f(n :Q(nlogbm) T(n) =06(f(n))

Inour case a =4, b =2,and f(n) = ©(n). Hence, we are in
Case 1, since n = O(n2-€) = O(nlogra-¢),

We get a running time of ©(n?) for our algorithm.

=> Not better then the “school method”.

17’1)

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy
= (Ap + A1) - (Bo +B1) —A1B1 — AgBo

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12
—tr— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 = A1Bg + AgBy =72 =12
—tr— ——
= (Ap + A1) - (Bo + B1) — A1By — ApBy

Hence,

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bp)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,Bg+B1) —Z> — Z
8: return Zp - 2" + Z; - 2% & Zo

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12

—t— ——
= (Ap + A1) - (Bo +B1) — A1B1 — AgBo

Hence,

Algorithm 4 mult(A, B)

1: if |A| = |B] = 1 then

2 return ag - by

3: split A into Ag and A,

4: split B into By and B,

5: Z» — mult(Aq,Bp)

6: Zo — mult(Ag, By)

7: Z1 — mult(Ag+ A1,Bg+B1) —Z> — Z
8: return Zp - 2" + Z; - 2% & Zo

o)

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A,
4: split B into By and B,
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B,
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,

Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Z» — mult(Aq,Bp)
6
7
8

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Hence,
Algorithm 4 mult(A, B)
1: if JA| = |B| =1 then O(1)
2 return ag - by O(1)
3: split A into Ag and A, On)
4: split B into By and B; O(n)
5: Zp — mult(A, By) T(%)
6: Zo — mult(Ag, By)
7: Z1 — mult(Ag+ A1,Bg+B1) —Z> — Z
8: return Zp - 2" + Z; - 2% & Zo

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq,B;)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

o(1)
O(1)
O(n)
O(n)
T(%)
T(%)

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq,B;)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

o(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%) +0(n)

Example: Multiplying Two Integers

We can use the following identity to compute Z;:

Hence,

Z1 =A1Bg + AgB; =72 =12
—tr— ——
= (Ao + A1) - (Bo + B1) — A1B1 — ApBo

Algorithm 4 mult(A, B)

. if |A| = |B] = 1 then

return ag - by

1

2
3: split A into Ag and A,
4: split B into By and B,

5:
6
7
8

Z> — mult(Aq,B;)

. Zo — mult(Ag, Bg)
. Z1 — mult(Ag + Ay1,Bg +By) — Z> — Z
s return Z» - 2" + Z; - 2% & Zo

o(1)
O(1)
O(n)
O(n)
T(%)
T(%)
T(%) +0(n)
O(n)

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%) +OMm) .

Master Theorem: Recurrence: T[n] = aT () + f(n).

> Case 1: f(n) O (nlospa-c) T(n) = O(nlosra)

> Case 2: f(n) = O(n'°ealogkn) T(n) = O(n'o8 4 1ogk™!

> Case 3: f(n) = Q(nlogb a+te) T(n) =0(f(n))

n)

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%> +OMm) .

Master Theorem: Recurrence: T[n] = aT () + f(n).

> Case 1: f(n) = O(nlogra—c) T(n) = O(nlosra)
> Case 2: f(n) = 0(nl°%alogkn) T(n) = O(nlograloght!
> Case 3: f(n) = Q(nlogb a+e) T(n) =0(f(n))

Again we are in Case 1. We get a running time of
@(nlogz 3) ~ @(1’11'59).

n)

Example: Multiplying Two Integers

We get the following recurrence:

T(n) = 3T<%> +OMm) .

Master Theorem: Recurrence: T[n] = aT(%) + f(n).
> Case 1: f(n) = O(nlogra—c) T(n) = O(nlosra)

> Case 2: f(n) = O(n'°ealogkn) T(n) = O(n'o8 4 1ogk™!

> Case 3: f(n) = Q(nlogb a+te) T(n) =0(f(n))

Again we are in Case 1. We get a running time of
O(n'°g23) ~ @(n'9).

A huge improvement over the “school method”.

n)

	Master Theorem

