11

Greedy-algorithm:
> start with f(e) = 0 everywhere
> find an s-t path with f(e) < c(e) on every edge
» augment flow along the path

> repeat as long as possible

a

PN

0\1'0 0/90

%o o

o

b

flow value: 0

11

Greedy-algorithm:
> start with f(e) = 0 everywhere
» find an s-t path with f(e) < c(e) on every edge
» augment flow along the path

> repeat as long as possible

a

PN

0\1'0 0/90

<17

%o o

'

b

flow value: 0

11

Greedy-algorithm:
> start with f(e) = 0 everywhere
» find an s-t path with f(e) < c(e) on every edge
» augment flow along the path
> repeat as long as possible

PN

1%\10 0/90

0/20 ’L%\’LQ

'

b

flow value: 0

11

Greedy-algorithm:
> start with f(e) = 0 everywhere
> find an s-t path with f(e) < c(e) on every edge
» augment flow along the path

> repeat as long as possible

a

PR

0 [4)
'LQ\'L /eo

<

o/?o 10\7’0

o

flow value: 20

The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):

The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):
» Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between u and v.

The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):
» Suppose the original graph has edges e; = (u,v), and
e> = (v,u) between u and v.
> G has edge ¢ with capacity max{0,c(e1) — f(e1) + f(eg)}
and e, with with capacity max{0,c(ez) — f(e2) + f(e1)

The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):
» Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between u and v.
> Gy has edge e} with capacity max{0,c(e1) — f(e1) + f(e2)}
and e), with with capacity max{0,c(e2) — f(e2) + f(e1)}.

G @ 6|10 5120 @

Gr @ g—2! ©

Augmenting Path Algorithm

Definition 4
An augmenting path with respect to flow f, is a path from s to t
in the auxiliary graph Gy that contains only edges with non-zero

capacity.

Augmenting Path Algorithm

Definition 4
An augmenting path with respect to flow f, is a path from s to ¢
in the auxiliary graph Gy that contains only edges with non-zero

capacity.

Algorithm 1 FordFulkerson(G = (V,E,c))

1: Initialize f(e) < O for all edges.

2: while 3 augmenting path p in G do

3: augment as much flow along p as possible.

Augmenting Paths

<9<0/]0 é/ \%
\@ on2

flow value: 0

Augmenting Paths

0|7 @

®<0/]0 \(g/ \%/
\@ on2 d

flow value: 0

Augmenting Paths

0|7 @

®<% N’/
\@ gl 12 d

flow value: 0

.. ‘5
D o

Augmenting Paths

0|7 @

@<8,,0\ \ é/ \%/

@ 8l12

flow value: 8

Augmenting Paths

B RN

0]2 0|7

8/10 l \g/
Q 812

flow value: 8

10/@

V.

®‘\ 2 e 0 /CD
8 : :
2\\@% _ 4\;}/%

Augmenting Paths

C
O\ 5
0\10 ?\ 95

‘8710

l
O 212 d

Augmenting Paths

2|7 @

®< ,%\ \ é/ \%/

(® 1012

flow value: 10

Augmenting Paths

0|2 2|7

T o ©\
o TN T

]0/10
\Ql’> 10012 \é/

flow value: 10

" 3 2 .
~2__ |} N e
\@ 10 =gl

Augmenting Paths

/ﬁ)\m ©\?/5
5

02 Y9 2|7

> ¢\10

]0/10

\@ 1012

flow value: 10

Augmenting Paths

517 @

®< ,%\ \ é/ \%/

(® 1012

flow value: 13

Augmenting Path Algorithm

Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.

Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 6

The value of a maximum flow is equal to the value of a minimum
cut.

Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 6

The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).

Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 6
The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).

2. Flow f is a maximum flow.

Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 6
The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.

Augmenting Path Algorithm

Augmenting Path Algorithm

1. = 2.
This we already showed.

Augmenting Path Algorithm

1. = 2.

This we already showed.

2. = 3.

If there were an augmenting path, we could improve the flow.
Contradiction.

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.

If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.

> Let f be a flow with no augmenting paths.

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.
> Let f be a flow with no augmenting paths.

> Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.

Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.
> Let f be a flow with no augmenting paths.

> Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.

> Since there is no augmenting path we have s € A and t ¢ A.

Augmenting Path Algorithm

val(f)

Augmenting Path Algorithm

val(fy = > fley- > f(e

ecout(A) ecinto(A)

Augmenting Path Algorithm

val(fy = > fley- > f(e

ecout(A) ecinto(A)

= > cle)

ecout(A)

Augmenting Path Algorithm

val(fy = > fley- > f(e

ecout(A) ecinto(A)

= > cle)

ecout(A)

=cap(A,V\ A)

Augmenting Path Algorithm

val(f) = > fle)— > fle)
ecout(A) ecinto(A)
= z c(e)
ecout(A)
=cap(A,V\A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the second
exploits the fact that the flow along incoming edges must be O as
the residual graph does not have edges leaving A.

Analysis

Assumption:
All capacities are integers between 1 and C.

Analysis

Assumption:
All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity ¢y (e) remains
integral troughout the algorithm.

Lemma 7

The algorithm terminates in at most val(f*) < nC iterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time ©(m). This gives a total running time of
O(mmcC).

Lemma 7

The algorithm terminates in at most val(f*) < nC iterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time ©(m). This gives a total running time of
O(mmcC).

Theorem 8
If all capacities are integers, then there exists a maximum flow
for which every flow value f(e) is integral.

A Bad Input

Problem: The running time may not be polynomial

o/ 0
o “So
o
% ®
&oo\ Q®

flow value: 0

A Bad Input

Problem: The running time may not be polynomial

0/ 0
o “So
o
% ®
&oo\ Q®

flow value: 0

A Bad Input

Problem: The running time may not be polynomial

0/ 0
1
1
% ®
$00 \¢\6,

flow value: 0

A Bad Input

Problem: The running time may not be polynomial

/O\ 099/ R

o 0
& /$00

9 N
%00 N

flow value: 1

A Bad Input

Problem: The running time may not be polynomial

° 2
& 00

9 N
%00 N

flow value: 1

A Bad Input

Problem: The running time may not be polynomial

o
° 97&00
0
AN
74 N
Soo\ N

flow value: 1

A Bad Input

Problem: The running time may not be polynomial

a
5 /CD\/ bf)g/ TR
c’Q /j‘ 4 2,
A\ % £ o 29
7 A
ol1
N 1 97
s o N >
0\ AN 99\ 4
b b “

flow value: 2

A Bad Input

Problem: The running time may not be polynomial

a
5 /CD\/ bf)g/ TN
& S N
A\ % £ o 29
z A
ol
N 1 o7
s & N >
0\ AN 99\ 4
A
b b 7z

flow value: 2

A Bad Input

Problem: The running time may not be polynomial

o/ p;
1
an
7. O

No”

flow value: 2

2

s3>

A\

4

¥o, 9

N

A Bad Input

Problem: The running time may not be polynomial

a a
P
. /O\] SZTN
& S N
N 0 3 : 99\
z
mn
AN 0 R
00\ N o 4
Ry
b b /

flow value: 3

A Bad Input

Problem: The running time may not be polynomial

o/ 7
”L\"Q /$00
m “
N\
7 o
/Soo\ ,L\c,ﬁ

flow value: 3

A Bad Input

Problem: The running time may not be polynomial

o
S 50,
0
@< bl
e
o
ﬁfoo\ ,L\c,ﬁ

flow value: 3

A Bad Input

Problem: The running time may not be polynomial

a
/CD\ 9%/ TR
N s, & <
q,\" % 2 1‘9&
/ 0 X
ol P
N 1 o
e/y 600 <o bl b
% N 23 4
\ b \ b /

flow value: 4

A Bad Input

Problem: The running time may not be polynomial

a
N s, & <
0% % 19,9
/ s 0 \
ol /
N 1 o
< N b
Op N &) 9 7
A
\ ! \ - /

flow value: 4

A Bad Input

Problem: The running time may not be polynomial

o/ 2
1
an
< N

No”

flow value: 4

2

5%

A\

o)

¥9, 9

N

A Bad Input

Problem: The running time may not be polynomial

a a
® s, & o
'x,\" % 2, 1‘9&
/ 1 \
1 P
AN 0 31
e/y ® <o b
% »° %% %
\ \ v /
b b

flow value: 5

A Bad Input

Problem: The running time may not be polynomial

o/ 5
‘5\"0 /$00
m “
N\
o N
/Soo\ ”)\c,ﬁ

flow value: 5

A Bad Input

Problem: The running time may not be polynomial

/@\s

o
‘5\"0 %bo
0
@< bl
)
o
e:ﬁ“oo\ ”)\c,ﬁ

flow value: 5

A Bad Input

Problem: The running time may not be polynomial

a
N s, b 3
> % % 29>
/ 0 \
ol /
N 1 3l
s, N N b
% >0 %9 %
\ ! \ - /

flow value: 6

A Bad Input

Problem: The running time may not be polynomial

Q 3
”’\c,e /5‘00

flow value: 6
Question:

Can we tweak the algorithm so that the running time is
polynomial in the input length?

A Pathological Input
Letr = %(\5— 1). Then ¥"+2 = yn —yn+l,

r2

8
._oo—'n.)
/

VP
® 3 8
oo_,l} r ‘
N]
% 3 2 Z
N W

flow value: 0

A Pathological Input

Letr = %(ﬁ— 1). Then ¥"+2 = yn —yn+l,

o —>rw>

cP/
*
00—
)

<

hd C)e — x

A

N\

°)+—

flow value: 0

A Pathological Input

Letr = %(ﬁ— 1). Then ¥"+2 = yn —yn+l,

o —>rw>

V4

P 8
-
X“’ I
% 8

N
Nl

00

(4

flow value: 0

A Pathological Input

Let ¥ = 5(/5 — 1). Then ¥ +2 =y — i+l

flow value: 72

0 0 {d
AN
8
r3 ¢
8
f ®

A Pathological Input

Let ¥ = 5(/5 — 1). Then ¥ +2 =y — i+l

flow value: 72

A Pathological Input

Let ¥ = 5(/5 — 1). Then ¥ +2 =y — i+l

0+73 =173

flow value: 72

A Pathological Input

Let ¥ = 5(/5 — 1). Then ¥ +2 =y — i+l

(d

f
8

V4

%

3

flow value: 2 + 73

A Pathological Input
Let ¥ = 5(/5 — 1). Then ¥ +2 =y — i+l

3 >

flow value: 2 + 73

A Pathological Input

Let ¥ = 5(/5 — 1). Then ¥ +2 =y — i+l

r3 —prd =

0+ri=1r4
[

ri-ri=0

il

[oe]

flow value: 2 + 73

A Pathological Input

Let ¥ = 5(/5 — 1). Then ¥ +2 =y — i+l

rS (3
f\
8 %
8
{
ri (O)—=
f(
8
8 ®
{
0 ®/
flow value: 2 + 3 + 4

Running time may be infinite!!!

How to choose augmenting paths?

How to choose augmenting paths?
> We need to find paths efficiently.

How to choose augmenting paths?
> We need to find paths efficiently.

> We want to guarantee a small number of iterations.

How to choose augmenting paths?
> We need to find paths efficiently.

> We want to guarantee a small number of iterations.

Several possibilities:

How to choose augmenting paths?
> We need to find paths efficiently.

> We want to guarantee a small number of iterations.

Several possibilities:

» Choose path with maximum bottleneck capacity.

How to choose augmenting paths?
> We need to find paths efficiently.

> We want to guarantee a small number of iterations.

Several possibilities:
» Choose path with maximum bottleneck capacity.

» Choose path with sufficiently large bottleneck capacity.

How to choose augmenting paths?
> We need to find paths efficiently.

> We want to guarantee a small number of iterations.

Several possibilities:
» Choose path with maximum bottleneck capacity.
» Choose path with sufficiently large bottleneck capacity.

» Choose the shortest augmenting path.

	The Generic Augmenting Path Algorithm

