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Greedy-algorithm:
> start with f(e) = 0 everywhere
> find an s-t path with f(e) < c(e) on every edge
» augment flow along the path

> repeat as long as possible
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The Residual Graph

From the graph G = (V, E,c) and the current flow f we construct
an auxiliary graph Gy = (V,Ey,cy) (the residual graph):
» Suppose the original graph has edges e; = (u,v), and
e» = (v,u) between u and v.
> Gy has edge e} with capacity max{0,c(e1) — f(e1) + f(e2)}
and e), with with capacity max{0,c(e2) — f(e2) + f(e1)}.
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Augmenting Path Algorithm

Definition 4
An augmenting path with respect to flow f, is a path from s to ¢
in the auxiliary graph Gy that contains only edges with non-zero

capacity.

Algorithm 1 FordFulkerson(G = (V,E,c))

1: Initialize f(e) < O for all edges.

2: while 3 augmenting path p in G do

3: augment as much flow along p as possible.
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Augmenting Path Algorithm

Theorem 5
A flow f is a maximum flow iff there are no augmenting paths.

Theorem 6
The value of a maximum flow is equal to the value of a minimum
cut.

Proof.
Let f be a flow. The following are equivalent:

1. There exists a cut A such that val(f) = cap(A,V \ A).
2. Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.
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Augmenting Path Algorithm

1. = 2.
This we already showed.

2. = 3.
If there were an augmenting path, we could improve the flow.
Contradiction.

3. = 1.
> Let f be a flow with no augmenting paths.

> Let A be the set of vertices reachable from s in the residual
graph along non-zero capacity edges.

> Since there is no augmenting path we have s € A and t ¢ A.
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Augmenting Path Algorithm

val(f) = > fle)— > fle)
ecout(A) ecinto(A)
= z c(e)
ecout(A)
=cap(A,V\A)

This finishes the proof.

Here the first equality uses the flow value lemma, and the second
exploits the fact that the flow along incoming edges must be O as
the residual graph does not have edges leaving A.
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Analysis

Assumption:
All capacities are integers between 1 and C.

Invariant:

Every flow value f(e) and every residual capacity ¢y (e) remains
integral troughout the algorithm.
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Lemma 7

The algorithm terminates in at most val(f*) < nC iterations,
where f* denotes the maximum flow. Each iteration can be
implemented in time ©(m). This gives a total running time of
O(mmcC).

Theorem 8
If all capacities are integers, then there exists a maximum flow
for which every flow value f(e) is integral.
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Problem: The running time may not be polynomial
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Question:

Can we tweak the algorithm so that the running time is
polynomial in the input length?
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Running time may be infinite!!!
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How to choose augmenting paths?
> We need to find paths efficiently.

> We want to guarantee a small number of iterations.

Several possibilities:
» Choose path with maximum bottleneck capacity.
» Choose path with sufficiently large bottleneck capacity.

» Choose the shortest augmenting path.
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