

08 – Amortized Analysis

- Consider a sequence a₁, a₂, ..., a_n of
 n operations performed on a data structure *D*
- T_i = execution time of a_i
- $T = T_1 + T_2 + \dots + T_n$ total execution time
- The execution time of a single operation can vary within a large range, e.g. in 1,...,n, but the worst case does not occur for all operations of the sequence.
- Average execution time of an operation, i.e. $1/n \cdot \Sigma_{1 \le i \le n} T_i$, is small even though a single operation can have a high execution time.

Analysis of algorithms

- Best case (Too optimistic)
- Worst case (Sometimes very pessimistic)
- Average case (Input drawn according to a probability distribution. However, distribution might not be known, or input is not generated by a distribution.)
- Amortized worst case

What is the average cost of an operation in a worst case sequence of operations?

Idea:

- Pay more for inexpensive operations
- Use the credit to cover the cost of expensive operations

Three methods:

- 1. Aggregate method
- 2. Accounting method
- 3. Potential method

1. Aggregate method: binary counter

Incrementing a binary counter: determine the bit flip cost

Operation	Counter value	Cost
	00000	
1	00001	1
2	000 <mark>10</mark>	2
3	0001 <mark>1</mark>	1
4	00100	3
5	0010 <mark>1</mark>	1
6	001 <mark>10</mark>	2
7	0011 <mark>1</mark>	1
8	01000	4
9	0100 <mark>1</mark>	1
10	010 <mark>10</mark>	2
11	0101 <mark>1</mark>	1
12	01 <mark>100</mark>	3
13	0110 <mark>1</mark>	1

In gneral:

For any *n*, estimate the total time of *n* increment operations.

Show:

Amortized cost of an operation is upper bounded by *c*.

 \rightarrow Total cost is upper bounded by *cn*.

Observation:

In each operation exactly one 0 flips to 1.

Idea:

Pay two cost units for flipping a 0 to a 1

 \rightarrow each 1 has one cost unit deposited in the banking account

Counter value	
00000	
0 0 0 0 <mark>1</mark>	
0 0 0 <mark>1 0</mark>	
0 0 0 1 <mark>1</mark>	
0 0 <mark>1 0 0</mark>	
0 0 1 0 <mark>1</mark>	
0 0 1 <mark>1 0</mark>	
0 0 1 1 <mark>1</mark>	
01000	
0 1 0 0 <mark>1</mark>	
0 1 0 <mark>1 0</mark>	

The accounting method

Operation	Counter value	Actual cost	Payment	Credit
	00000			
1	00001	1	2	1
2	00010	2	0+2	1
3	00011	1	2	2
4	00100	3	0+0+2	1
5	00101	1	2	2
6	00110	2	0+2	2
7	00111	1	2	3
8	01000	4	0+0+0+2	1
9	01001	1	2	2
10	0 1 0 <mark>1 0</mark>	1	0+2	2

We only pay from the credit when flipping a 1 to a 0.

WS 2021/22

Potential function Φ

Data structure $D \rightarrow \Phi(D)$

 t_i = actual cost of the *i*-th operation

 Φ_i = potential after execution of the *i*-th operation (= $\Phi(D_i)$)

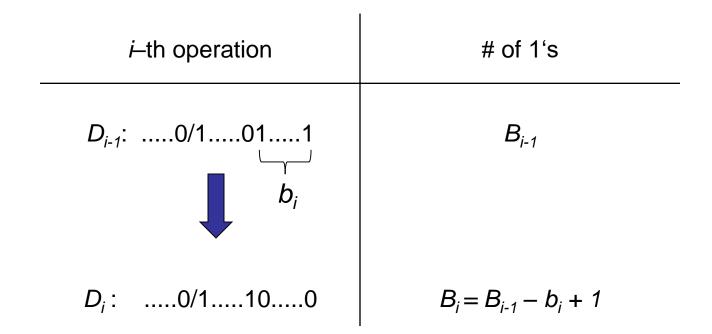
 a_i = amortized cost of the *i*-th operation

Definition:

$$a_i = t_i + \Phi_i - \Phi_{i-1}$$

Example: binary counter

 D_i = counter value after the *i*-th operation $\Phi_i = \Phi(D_i) = \#$ of 1's in D_i



 t_i = actual bit flip cost of operation $i = b_i + 1$

$$\mathbf{a}_i = t_i + \Phi(D_i) - \Phi(D_{i-1})$$

WS 2021/22

© S. Albers 11

Binary counter

 t_i = actual bit flip cost of operation *i* a_i = amortized bit flip cost of operation *i*

$$a_{i} = (b_{i} + 1) + (B_{i-1} - b_{i} + 1) - B_{i-1}$$

= 2

$$\Rightarrow \sum_{i=1}^{n} a_i \le 2n$$

$$\Rightarrow \sum_{i=1}^{n} a_i = \sum_{i=1}^{n} (t_i + \Phi(D_i) - \Phi(D_{i-1})) \le 2n$$

 $\Rightarrow \sum_{i=1}^{n} t_i = \sum_{i=1}^{n} a_i - \Phi(D_n) + \Phi(D_0) \le 2n - \Phi(D_n) + \Phi(D_0) \le 2n$

Problem:

Maintain a table supporting the operations insert and delete such that

- the table size can be adjusted dynamically to the number of items
- the used space in the table is always at least a constant fraction of the total space
- the total cost of a sequence of n operations (insert or delete) is O(n).

Applications: hash table, heap, stack, etc.

Load factor α_{T} : number of items stored in the table divided by the size of the table

Dynamic table T

size[7];// size of the tablenum[7];// number of items

Initially there is an empty table with 1 slot, i.e. size[T] = 1 and num[T] = 0.

insert (T, x)

- 1. **if** num[*T*] = size[*T*] **then**
- 2. allocate new table T' with $2 \cdot \text{size}[T]$ slots;
- 3. insert all items in T into T';
- 4. free table T;
- 5. T := T';
- 6. size[*T*] := 2·size[*T*];

7. endif;

- 8. insert x into T;
- 9. num[7] := num[7]+1;

Cost of *n* insertions into an initially empty table

 $t_i = \text{cost of the } i\text{-th insert operation}$

Worst case:

 $t_i = 1$ if the table is not full prior to operation *i* $t_i = (i-1) + 1$ if the table is full prior to operation *i*.

Thus *n* insertions incur a total cost of at most

$$\sum_{i=1}^{n} i = \Theta(n^2).$$

Amortized worst case:

Aggregate method, accounting method, potential method

- T table with
- k = num[T] items
- s = size[T] size

Potential function

 $\Phi(T) = 2 k - s$

- $\Phi_0 = \Phi(T_0) = \Phi$ (empty table) = -1
- Immediately before a table expansion we have k = s, thus $\Phi(T) = k = s$.
- Immediately after a table expansion we have k = s/2, thus $\Phi(T) = 2k - s = 0$.
- For all $i \ge 1$: $\Phi_i = \Phi(T_i) > 0$ Since $\Phi_n - \Phi_0 \ge 0$

$$\sum_{i=1}^n t_i \leq \sum_{i=1}^n a_i.$$

 $k_i = \#$ items stored in *T* after the *i*-th operation $s_i = table size of$ *T*after the*i*-th operation

Case 1: *i*-th operation does not trigger an expansion

$$k_{i} = k_{i-1} + 1, \ S_{i} = S_{i-1}$$
$$a_{i} = 1 + (2k_{i} - S_{i}) - (2k_{i-1} - S_{i-1})$$
$$= 1 + 2(k_{i} - k_{i-1})$$
$$= 3$$

Case 2: i-th operation does trigger an expansion

$$k_i = k_{i-1} + 1, \ s_i = 2s_{i-1}$$

$$a_{i} = k_{i-1} + 1 + (2k_{i} - s_{i}) - (2k_{i-1} - s_{i-1})$$

= 2(k_{i-1} + 1) - k_{i-1} + 1 - 2s_{i-1} + s_{i-1}
= k_{i-1} + 3 - s_{i-1}
= 3

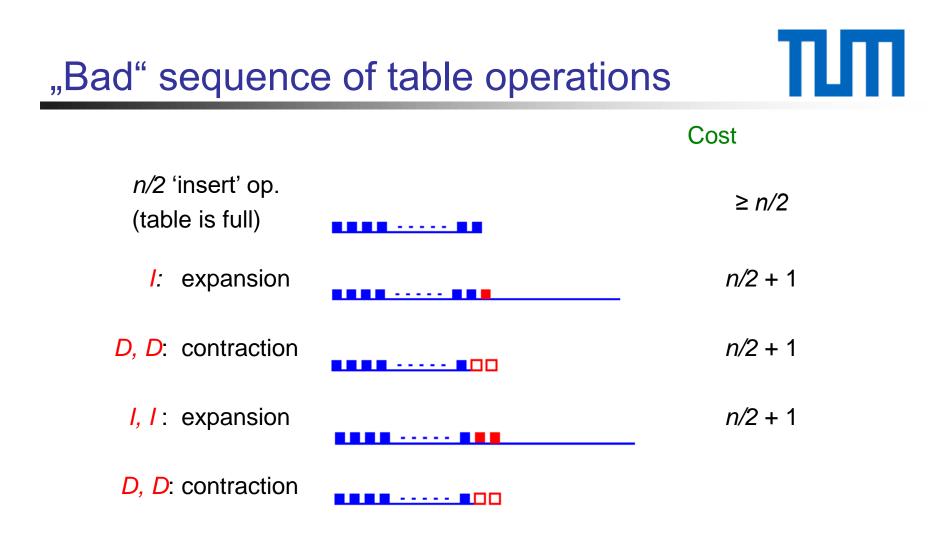
Now: Contract the table whenever the load becomes too small.

Goal:

- (1) The load factor is bounded from below by a constant.
- (2) The amortized cost of a table operation is constant.

First approach

- Expansion: as before
- Contraction: Halve the table size when a deletion would cause the table to become less than half full.



Total cost of the sequence of *n* operations, with $n \ge 2$: $I_{n/2}$, I, D, D, I, I, D, D, I

$$n/2+1/2 \cdot n/2 \cdot (n/2+1) > n^2/8$$

Expansion: Double the table size when an item is inserted into a full table.

Contraction: Halve the table size when a deletion causes the table to become less than 1/4 full.

Property: At any time the table is at least $\frac{1}{4}$ full, i.e. $\frac{1}{4} \le \alpha(T) \le 1$

What is the cost of a sequence of table operations?

Analysis of 'insert' and 'delete' operations

 $k = \text{num}[T], s = \text{size}[T], \alpha = k/s$

Potential function Φ

$$\Phi(T) = \begin{cases} 2k - s, & \text{if } \alpha \ge 1/2\\ s/2 - k, & \text{if } \alpha < 1/2 \end{cases}$$

Analysis of 'insert' and 'delete' operations

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

Immediately after a table expansion or contraction:

$$s = 2k$$
, thus $\Phi(T) = 0$

ТΠ

i-th operation: $k_i = k_{i-1} + 1$

Case 1: $\alpha_{i-1} \ge \frac{1}{2}$

Potential function before and after the operation is $\Phi(T) = 2k$ -s. We have already proved that the amortized cost is equal to 3.

Case 2: $\alpha_{i-1} < \frac{1}{2}$

Case 2.1: $\alpha_i < \frac{1}{2}$ Case 2.2: $\alpha_i \ge \frac{1}{2}$ Case 2.1: $\alpha_{i-1} < \frac{1}{2}$, $\alpha_i < \frac{1}{2}$ no expansion

Potential function Φ

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

$$a_{i} = 1 + (s_{i}/2 - k_{i}) - (s_{i-1}/2 - k_{i-1})$$

= 1 - (k_{i-1} + 1) + k_{i-1}
= 0

Case 2.2: $\alpha_{i-1} < \frac{1}{2}, \alpha_i \ge \frac{1}{2}$ no expansion

Potential function Φ

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

$$a_{i} = 1 + (2k_{i} - s_{i}) - (s_{i-1}/2 - k_{i-1})$$

= 1 + 2(k_{i-1} + 1) - 3s_{i-1}/2 + k_{i-1}
= 3 + 3(k_{i-1} - s_{i-1}/2)
< 3

The last inequality holds because $k_{i-1} / s_{i-1} < \frac{1}{2}$.

WS 2021/22

Analysis of a 'delete' operation

 $k_i = k_{i-1} - 1$

Case 1: $\alpha_{i-1} < \frac{1}{2}$

Case 1.1: deletion does not trigger a contraction $s_i = s_{i-1}$

Potential function Φ

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

$$a_{i} = 1 + (s_{i}/2 - k_{i}) - (s_{i-1}/2 - k_{i-1})$$

= 1 - (k_{i-1} - 1) + k_{i-1}
= 2

Analysis of a 'delete' operation

 $k_i = k_{i-1} - 1$

Case 1: $\alpha_{i-1} < \frac{1}{2}$

Case 1.2: $\alpha_{i-1} < \frac{1}{2}$ deletion does trigger a contraction

 $s_i = s_{i-1}/2$ $k_{i-1} = s_{i-1}/4$

Potential function Φ

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

$$a_{i} = 1 + k_{i-1} + (s_{i}/2 - k_{i}) - (s_{i-1}/2 - k_{i-1})$$

= 1 + k_{i-1} + s_{i-1}/4 - (k_{i-1} - 1) - s_{i-1}/2 + k_{i-1}
= 2 - s_{i-1}/4 + k_{i-1}
= 2

Case 2: $\alpha_{i-1} \ge \frac{1}{2}$

A contraction only occurs if $s_{i-1} = 2$ and $k_{i-1} = 1$.

In this case
$$a_i = 1 + s_i/2 - k_i - (2 k_{i-1} - s_{i-1})$$

= 1 +1/2 - 2 + 2 < 2.

Therefore, in the following, we may assume that no contraction occurs.

Analysis of a 'delete' operation

Case 2: $\alpha_{i-1} \ge \frac{1}{2}$ no contraction

$$s_i = s_{i-1}$$
 $k_i = k_{i-1} - 1$

Case 2.1: $\alpha_i \ge \frac{1}{2}$

Potential function Φ

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

$$a_{i} = 1 + (2k_{i} - s_{i}) - (2k_{i-1} - s_{i-1})$$

= 1 + 2(k_{i-1} - 1) - 2k_{i-1}
< 0

Case 2: $\alpha_{i-1} \ge \frac{1}{2}$ no contraction

 $s_i = s_{i-1}$ $k_i = k_{i-1} - 1$

Case 2.2: α_i < ½

Potential function Φ

$$\Phi(T) = \begin{cases} 2k - s, \text{ if } \alpha \ge 1/2\\ s/2 - k, \text{ if } \alpha < 1/2 \end{cases}$$

$$a_{i} = 1 + (s_{i}/2 - k_{i}) - (2k_{i-1} - s_{i-1})$$

= 1 + s_{i-1}/2 - k_{i-1} + 1 - 2k_{i-1} + s_{i-1}
= 2 + 3(s_{i-1}/2 - k_{i-1})
 ≤ 2

The last inequality holds because $k_{i-1} \ge s_{i-1}/2$. WS 2021/22