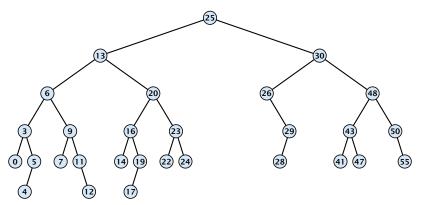
7.1 Binary Search Trees

An (internal) binary search tree stores the elements in a binary tree. Each tree-node corresponds to an element. All elements in the left sub-tree of a node v have a smaller key-value than $\ker[v]$ and elements in the right sub-tree have a larger-key value. We assume that all key-values are different.

(External Search Trees store objects only at leaf-vertices)

Examples:

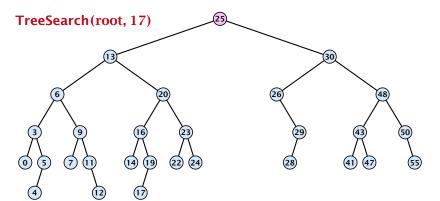


6. Feb. 2022

7.1 Binary Search Trees

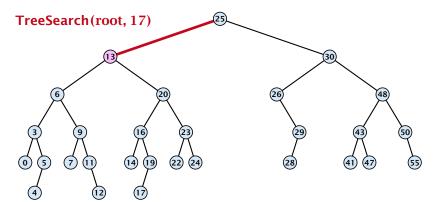
We consider the following operations on binary search trees. Note that this is a super-set of the dictionary-operations.

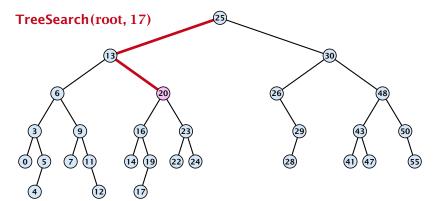
- ightharpoonup T. insert(x)
- ightharpoonup T, delete(x)
- ightharpoonup T, search(k)
- ightharpoonup T, successor(x)
- ightharpoonup T. predecessor(x)
- ightharpoonup T. minimum()
- ightharpoonup T. maximum()

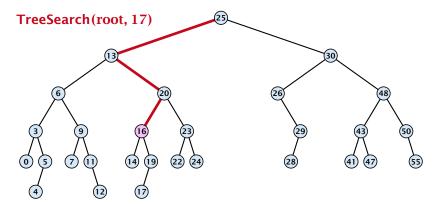


Algorithm 1 TreeSearch(x, k)

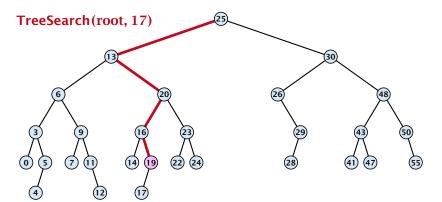
1: **if** x = null or k = key[x] **return** x


2: **if** k < key[x] **return** TreeSearch(left[x], k)


- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)


- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)

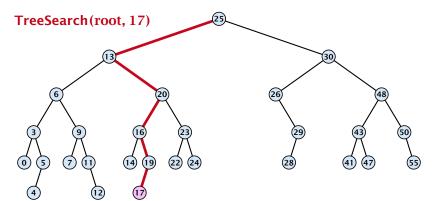
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



Algorithm 1 TreeSearch(x, k)

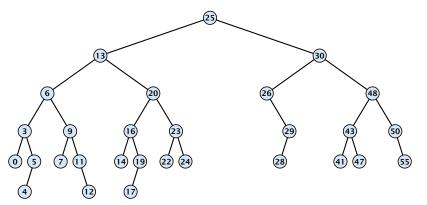
1: **if** x = null or k = key[x] **return** x

2: **if** k < key[x] **return** TreeSearch(left[x], k)

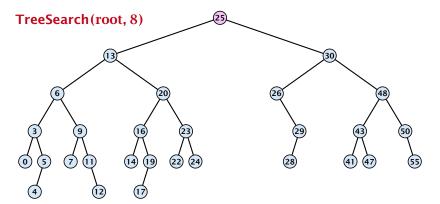


Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x


2: **if** k < key[x] **return** TreeSearch(left[x], k)

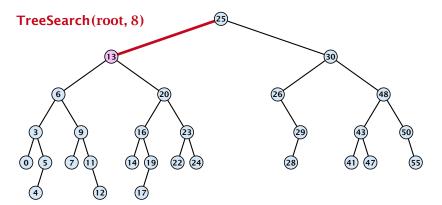
- 1: **if** x = null or k = key[x] **return** x
- 2: **if** k < key[x] **return** TreeSearch(left[x], k)
- 3: **else return** TreeSearch(right[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

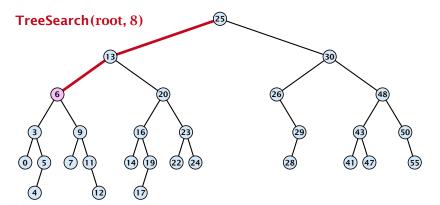
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

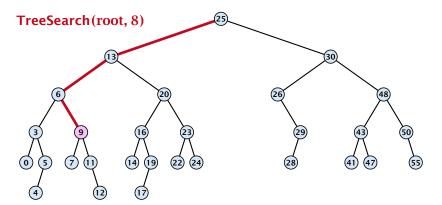
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

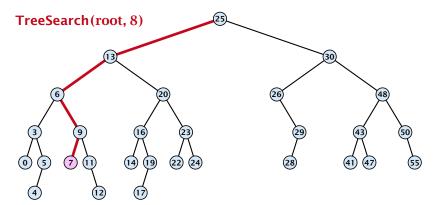
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

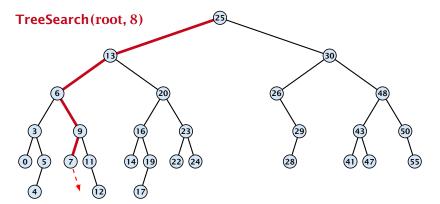
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

1: **if** x = null or k = key[x] **return** x

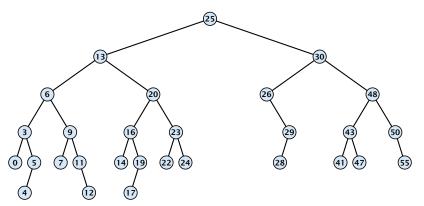
2: **if** k < key[x] **return** TreeSearch(left[x], k)



Algorithm 1 TreeSearch(x, k)

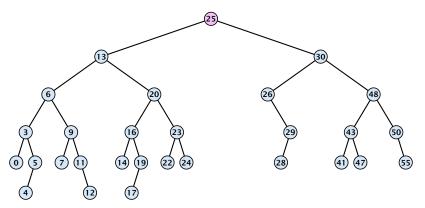
1: **if** x = null or k = key[x] **return** x

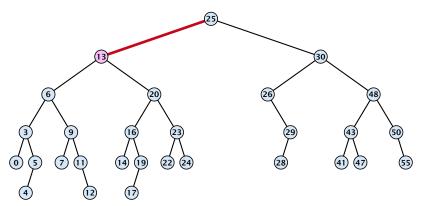
2: **if** k < key[x] **return** TreeSearch(left[x], k)

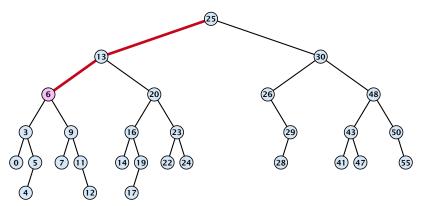


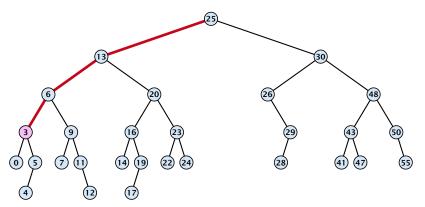
Algorithm 1 TreeSearch(x, k)

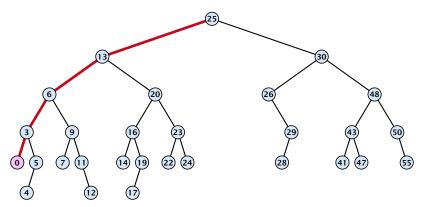
1: **if** x = null or k = key[x] **return** x

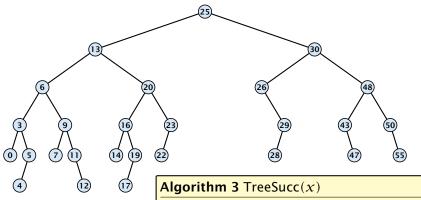

2: **if** k < key[x] **return** TreeSearch(left[x], k)

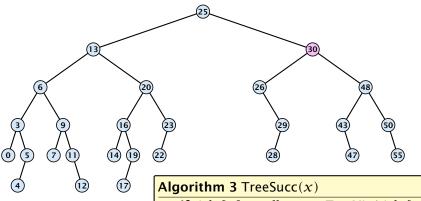

- 1: **if** x = null or left[x] = null return x
- 2: return TreeMin(left[x])

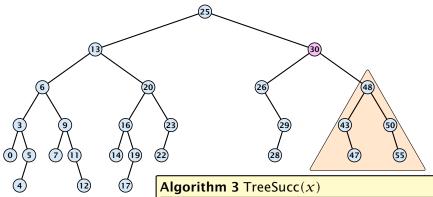

- 1: **if** x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])

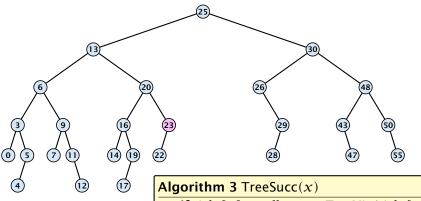

- 1: **if** x = null or left[x] = null return x
- 2: return TreeMin(left[x])

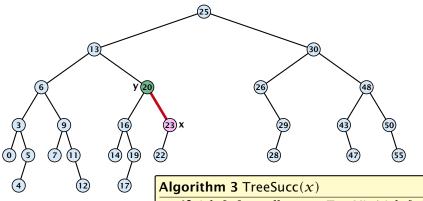

- 1: **if** x = null or left[x] = null return x
- 2: **return** TreeMin(left[x])

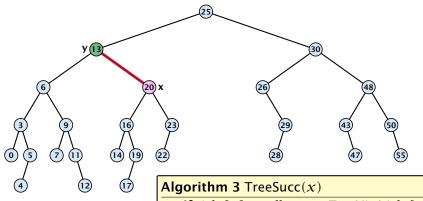

- 1: **if** x = null or left[x] = null return x
- 2: return TreeMin(left[x])

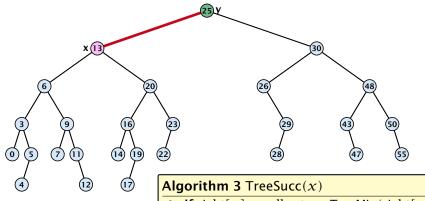

- 1: **if** x = null or left[x] = null return x
- 2: return TreeMin(left[x])

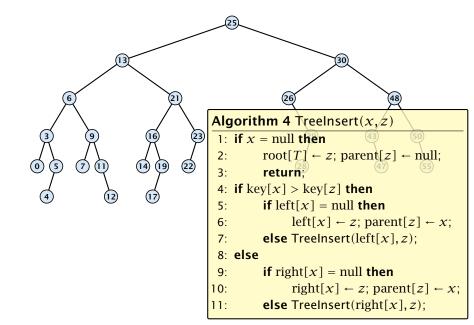

- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;

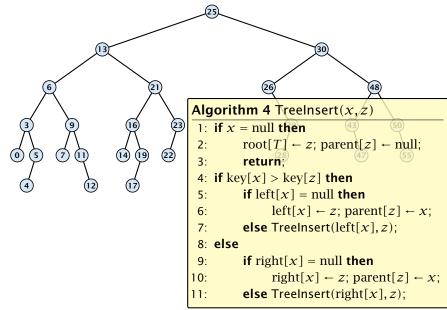

- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;


- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow parent[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: return y;

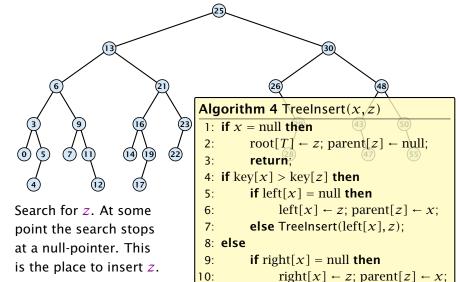

- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;


- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;

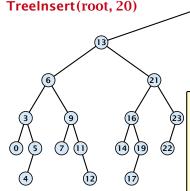

- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;



- 1: **if** right[x] \neq null **return** TreeMin(right[x])
- 2: $y \leftarrow \text{parent}[x]$
- 3: while $y \neq \text{null and } x = \text{right}[y]$ do
- 4: $x \leftarrow y; y \leftarrow \text{parent}[x]$
- 5: **return** y;



Insert element **not** in the tree.


Insert element not in the tree.

11:

else Treelnsert(right[x], z);

Insert element not in the tree.

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x,z)

1: if x = null then2: $\text{root}[T] \leftarrow z$; parent $[z] \leftarrow \text{null}$;

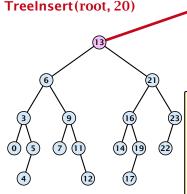
3: return

4: **if** key[x] > key[z] **then**

5: **if** left[x] = null **then**

6: $\operatorname{left}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$;

7: 8: **else**


9: **if** right[x] = null **then**

10: $\operatorname{right}[x] \leftarrow \operatorname{randen}[z] \leftarrow x;$

else TreeInsert(left[x], z);

11: **else** TreeInsert(right[x], z);

Insert element not in the tree.

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

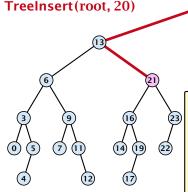
Algorithm 4 TreeInsert(x,z) 1: **if** x = null **then**(43)

3: return,

4: if key[x] > key[z] then

5: **if** left[x] = null **then**

6: $\operatorname{left}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$; 7: $\operatorname{else} \operatorname{TreeInsert}(\operatorname{left}[x], z)$;

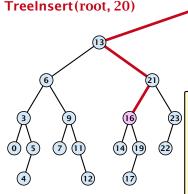

 $root[T] \leftarrow z$; parent[z] \leftarrow null;

8: **else**

9: **if** right[x] = null **then**

10: $\operatorname{right}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$; 11: $\operatorname{else} \operatorname{TreeInsert}(\operatorname{right}[x], z)$;

Insert element not in the tree.

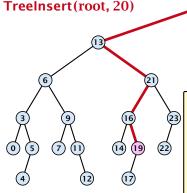


Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x,z)

- 1: if x = null then2: $\text{root}[T] \leftarrow z$; parent $[z] \leftarrow \text{null}$;
 - 3: return
- 4: **if** key[x] > key[z] **then**
- 5: **if** left[x] = null **then**
- 6: $\operatorname{left}[x] \leftarrow z$; parent $[z] \leftarrow x$;
- 7: **else** Treelnsert(left[x], z);
- 8: else
- 9: **if** right[x] = null **then**
- 10: $\operatorname{right}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$; 11: $\operatorname{else} \operatorname{TreeInsert}(\operatorname{right}[x], z)$;

Insert element **not** in the tree.

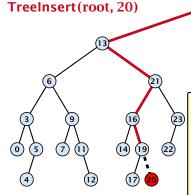

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x,z)

- 1: **if** x = null then (50) 2: $\text{root}[T] \leftarrow z$; parent $[z] \leftarrow \text{null}$;
 - return;
- 4: **if** key[x] > key[z] **then**
- 5: **if** left[x] = null **then**
- 5. If $\operatorname{Icr}[X] = \operatorname{Hull} \operatorname{then}$
- 6: $\operatorname{left}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$; 7: $\operatorname{else} \operatorname{TreeInsert}(\operatorname{left}[x], z)$;
- 8: **else**
- 9: **if** right[x] = null **then**
- 10: $\operatorname{right}[x] \leftarrow z$; parent $[z] \leftarrow x$;
- 11: **else** TreeInsert(right[x], z);

Binary Search Trees: Insert

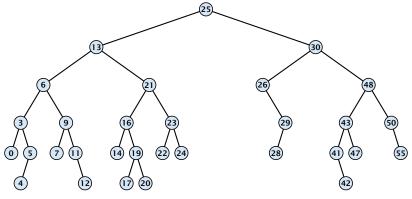
Insert element **not** in the tree.

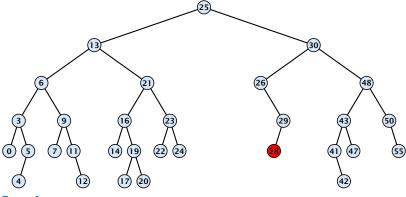

Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

Algorithm 4 TreeInsert(x,z)

- 1: if x = null then
 - $root[T] \leftarrow z$; parent[z] \leftarrow null; return;
- 4: if key[x] > key[z] then
- 5:
- **if** left[x] = null **then**
- $left[x] \leftarrow z$; parent[z] $\leftarrow x$; 6: 7: **else** Treelnsert(left[x], z);
- 8: else
- **if** right[x] = null **then** 9:
- $right[x] \leftarrow z$; $parent[z] \leftarrow x$; 10:
- **else** Treelnsert(right[x], z); 11:

Binary Search Trees: Insert

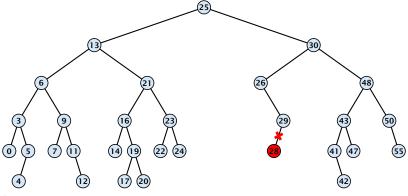

Insert element not in the tree.



Search for z. At some point the search stops at a null-pointer. This is the place to insert z.

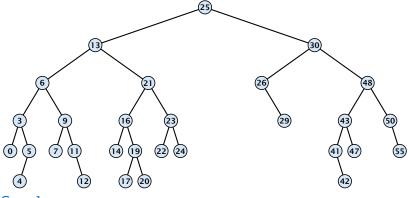
Algorithm 4 TreeInsert(x,z)

- 1: if x = null then2: $\text{root}[T] \leftarrow z$; parent $[z] \leftarrow \text{null}$;
 - 3: return
- 4: if key[x] > key[z] then
- 5: **if** left[x] = null **then**
- 6: $\operatorname{left}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$;
- 7: **else** Treelnsert(left[x], z);
- 8: else
- 9: **if** right[x] = null **then**
- 10: $\operatorname{right}[x] \leftarrow z$; $\operatorname{parent}[z] \leftarrow x$;
- 11: **else** TreeInsert(right[x], z);



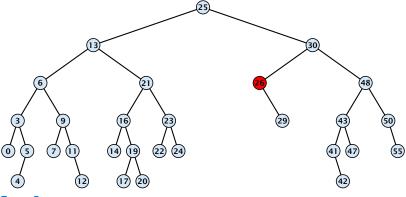
Case 1:

Element does not have any children


Simply go to the parent and set the corresponding pointer to null.

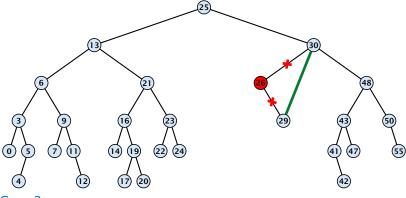
Case 1:

Element does not have any children


Simply go to the parent and set the corresponding pointer to null.

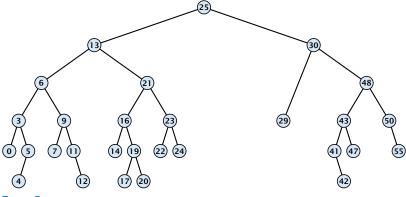
Case 1:

Element does not have any children


Simply go to the parent and set the corresponding pointer to null.

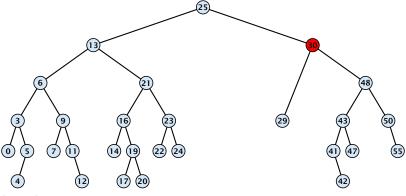
Case 2:

Element has exactly one child

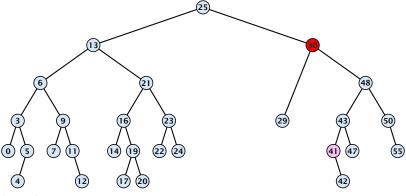

Splice the element out of the tree by connecting its parent to its successor.

Case 2:

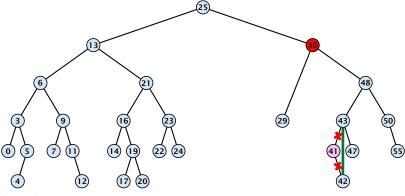
Element has exactly one child


Splice the element out of the tree by connecting its parent to its successor.

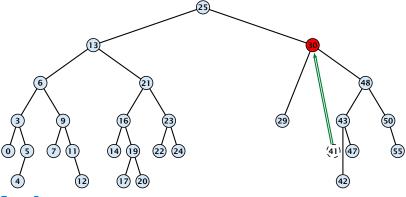
Case 2:


Element has exactly one child

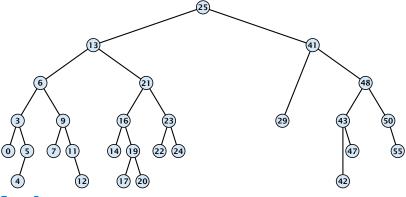
Splice the element out of the tree by connecting its parent to its successor.


Case 3:

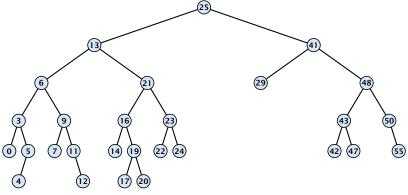
- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor


Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor


Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor


Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

Case 3:

- Find the successor of the element
- Splice successor out of the tree
- Replace content of element by content of successor

```
Algorithm 9 TreeDelete(z)
 1: if left[z] = null or right[z] = null
          then \gamma \leftarrow z else \gamma \leftarrow \text{TreeSucc}(z); select \gamma to splice out
 3: if left[\gamma] \neq null
         then x \leftarrow \text{left}[y] else x \leftarrow \text{right}[y]; x is child of y (or null)
 5: if x \neq \text{null then parent}[x] \leftarrow \text{parent}[y]; parent[x] is correct
 6: if parent[\gamma] = null then
 7: root[T] \leftarrow x
 8: else
 9: if \gamma = \text{left[parent}[\gamma]] then
                                                                  fix pointer to x
10:
                left[parent[v]] \leftarrow x
    else
11:
12.
        right[parent[y]] \leftarrow x
13: if y \neq z then copy y-data to z
```

24/25

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $O(\log n)$.

All operations on a binary search tree can be performed in time $\mathcal{O}(h)$, where h denotes the height of the tree.

However the height of the tree may become as large as $\Theta(n)$.

Balanced Binary Search Trees

With each insert- and delete-operation perform local adjustments to guarantee a height of $\mathcal{O}(\log n)$.

AVL-trees, Red-black trees, Scapegoat trees, 2-3 trees, B-trees, AA trees, Treaps

similar: SPLAY trees.