
Preflows

Definition 5

An (s, t)-preflow is a function f : E , R+ that satisfies

1. For each edge e
0 ≤ f(e) ≤ c(e) .

(capacity constraints)

2. For each v ∈ V \ {s, t}∑
e∈out(v)

f(e)≤
∑

e∈into(v)
f(e) .
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Preflows

Example 6
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A node that has
∑
e∈out(v) f(e)<

∑
e∈into(v) f(e) is called an active

node.
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Preflows

Definition:

A labelling is a function ` : V → N. It is valid for preflow f if

ñ `(u) ≤ `(v)+ 1 for all edges (u,v) in the residual graph Gf
(only non-zero capacity edges!!!)

ñ `(s) = n
ñ `(t) = 0

Intuition:

The labelling can be viewed as a height function. Whenever the

height from node u to node v decreases by more than 1 (i.e., it

goes very steep downhill from u to v), the corresponding edge

must be saturated.
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Preflows
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Preflows

Lemma 7

A preflow that has a valid labelling saturates a cut.

Proof:

ñ There are n nodes but n+ 1 different labels from 0, . . . , n.

ñ There must exist a label d ∈ {0, . . . , n} such that none of the

nodes carries this label.

ñ Let A = {v ∈ V | `(v) > d} and B = {v ∈ V | `(v) < d}.
ñ We have s ∈ A and t ∈ B and there is no edge from A to B in

the residual graph Gf ; this means that (A, B) is a saturated

cut.

Lemma 8

A flow that has a valid labelling is a maximum flow.
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Push Relabel Algorithms

Idea:

ñ start with some preflow and some valid labelling

ñ successively change the preflow while maintaining a valid

labelling

ñ stop when you have a flow (i.e., no more active nodes)

Note that this is somewhat dual to an augmenting path algorithm. The former maintains the
property that it has a feasible flow. It successively changes this flow until it saturates some cut
in which case we conclude that the flow is maximum. A preflow push algorithm maintains the
property that it has a saturated cut. The preflow is changed iteratively until it fulfills conservation
constraints in which case we can conclude that we have a maximum flow.
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Changing a Preflow

An arc (u,v) with cf (u,v) > 0 in the residual graph is admissible

if `(u) = `(v)+ 1 (i.e., it goes downwards w.r.t. labelling `).

The push operation

Consider an active node u with excess flow

f(u) =∑e∈into(u) f(e)−
∑
e∈out(u) f(e) and suppose e = (u,v)

is an admissible arc with residual capacity cf (e).

We can send flow min{cf (e), f (u)} along e and obtain a new

preflow. The old labelling is still valid (!!!).

ñ saturating push: min{f(u), cf (e)} = cf (e)
the arc e is deleted from the residual graph

ñ deactivating push: min{f(u), cf (e)} = f(u)
the node u becomes inactive

Note that a push-operation may be
saturating and deactivating at the
same time.

Push Relabel Algorithms

The relabel operation

Consider an active node u that does not have an outgoing

admissible arc.

Increasing the label of u by 1 results in a valid labelling.

ñ Edges (w,u) incoming to u still fulfill their constraint

`(w) ≤ `(u)+ 1.

ñ An outgoing edge (u,w) had `(u) < `(w)+ 1 before since

it was not admissible. Now: `(u) ≤ `(w)+ 1.
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Push Relabel Algorithms

Intuition:

We want to send flow downwards, since the source has a

height/label of n and the target a height/label of 0. If we see an

active node u with an admissible arc we push the flow at u
towards the other end-point that has a lower height/label. If we

do not have an admissible arc but excess flow into u it should

roughly mean that the level/height/label of u should rise. (If we

consider the flow to be water then this would be natural.)

Note that the above intuition is very incorrect as the labels are

integral, i.e., they cannot really be seen as the height of a node.
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Reminder

ñ In a preflow nodes may not fulfill conservation constraints; a

node may have more incoming flow than outgoing flow.

ñ Such a node is called active.

ñ A labelling is valid if for every edge (u,v) in the residual

graph `(u) ≤ `(v)+ 1.

ñ An arc (u,v) in residual graph is admissible if

`(u) = `(v)+ 1.

ñ A saturating push along e pushes an amount of c(e) flow

along the edge, thereby saturating the edge (and making it

dissappear from the residual graph).

ñ A deactivating push along e = (u,v) pushes a flow of f(u),
where f(u) is the excess flow of u. This makes u inactive.
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Push Relabel Algorithms

Algorithm 1 maxflow(G, s, t, c)
1: find initial preflow f
2: while there is active node u do

3: if there is admiss. arc e out of u then

4: push(G, e, f , c)
5: else

6: relabel(u)
7: return f

In the following example we always stick to the same active node

u until it becomes inactive but this is not required.
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Preflow Push
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The yellow edges indicate the cut that is intro-
duced by the smallest missing label.
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Analysis
Note that the lemma is almost trivial. A node v having excess
flow means that the current preflow ships something to v. The
residual graph allows to undo flow. Therefore, there must exist a
path that can undo the shipment and move it back to s. However,
a formal proof is required.

Lemma 9

An active node has a path to s in the residual graph.

Proof.

ñ Let A denote the set of nodes that can reach s, and let B
denote the remaining nodes. Note that s ∈ A.

ñ In the following we show that a node b ∈ B has excess flow

f(b) = 0 which gives the lemma.

ñ In the residual graph there are no edges into A, and, hence,

no edges leaving A/entering B can carry any flow.

ñ Let f(B) =∑v∈B f(v) be the excess flow of all nodes in B.
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Let f : E → R+0 be a preflow. We introduce the notation

f(x,y) =
{

0 (x,y) ∉ E
f((x,y)) (x,y) ∈ E

We have

f(B) =
∑
b∈B

f(b)

=
∑
b∈B

( ∑
v∈V

f(v, b)−
∑
v∈V

f(b,v)
)

=
∑
b∈B

( ∑
v∈A

f(v, b)+
∑
v∈B

f(v, b)−
∑
v∈A

f(b,v)−
∑
v∈B

f(b,v)
)

=
∑
b∈B

∑
v∈A

f(v, b)−
∑
b∈B

∑
v∈A

f(b,v)+
∑
b∈B

∑
v∈B

f(v, b)−
∑
b∈B

∑
v∈B

f(b,v)

≤ 0

Hence, the excess flow f(b) must be 0 for every node b ∈ B.
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Analysis

Lemma 10

The label of a node cannot become larger than 2n− 1.

Proof.

ñ When increasing the label at a node u there exists a path

from u to s of length at most n− 1. Along each edge of the

path the height/label can at most drop by 1, and the label of

the source is n.

Lemma 11

There are only O(n2) relabel operations.
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Analysis

Lemma 12

The number of saturating pushes performed is at most O(mn).

Proof.

ñ Suppose that we just made a saturating push along (u,v).
ñ Hence, the edge (u,v) is deleted from the residual graph.

ñ For the edge to appear again, a push from v to u is required.

ñ Currently, `(u) = `(v)+ 1, as we only make pushes along

admissible edges.

ñ For a push from v to u the edge (v,u) must become

admissible. The label of v must increase by at least 2.

ñ Since the label of v is at most 2n− 1, there are at most n
pushes along (u,v).



Lemma 13

The number of deactivating pushes performed is at most

O(n2m).

Proof.

ñ Define a potential function Φ(f ) =∑active nodes v `(v)
ñ A saturating push increases Φ by ≤ 2n (when the target node

becomes active it may contribute at most 2n to the sum).

ñ A relabel increases Φ by at most 1.

ñ A deactivating push decreases Φ by at least 1 as the node

that is pushed from becomes inactive and has a label that is

strictly larger than the target.

ñ Hence,

#deactivating_pushes ≤ #relabels+ 2n · #saturating_pushes

≤ O(n2m) .

Analysis

Theorem 14

There is an implementation of the generic push relabel algorithm

with running time O(n2m).
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Analysis

Proof:

For every node maintain a list of admissible edges starting at that

node. Further maintain a list of active nodes.

A push along an edge (u,v) can be performed in constant time

ñ check whether edge (v,u) needs to be added to Gf
ñ check whether (u,v) needs to be deleted (saturating push)

ñ check whether u becomes inactive and has to be deleted

from the set of active nodes

A relabel at a node u can be performed in time O(n)
ñ check for all outgoing edges if they become admissible

ñ check for all incoming edges if they become non-admissible
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Analysis
For special variants of push relabel algorithms we organize the

neighbours of a node into a linked list (possible neighbours in the

residual graph Gf ). Then we use the discharge-operation:

Algorithm 2 discharge(u)
1: while u is active do

2: v ← u.current-neighbour

3: if v = null then

4: relabel(u)
5: u.current-neighbour ← u.neighbour-list-head

6: else

7: if (u,v) admissible then push(u,v)
8: else u.current-neighbour ← v.next-in-list

Note that u.current-neighbour is a global variable. It is only

changed within the discharge routine, but keeps its value between

consecutive calls to discharge.



Lemma 15

If v = null in Line 3, then there is no

outgoing admissible edge from u.

Proof.

ñ While pushing from u the current-neighbour pointer is only

advanced if the current edge is not admissible.

ñ The only thing that could make the edge admissible again

would be a relabel at u.

ñ If we reach the end of the list (v = null) all edges are not

admissible.

This shows that discharge(u) is correct, and that we can perform

a relabel in Line 4.

In order for e to become admissible the
other end-point say v has to push flow
to u (so that the edge (u,v) re-appears
in the residual graph). For this the label
of v needs to be larger than the label of
u. Then in order to make (u,v) admis-
sible the label of u has to increase.
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