There are many practically important optimization problems that

Part Il are NP-hard.
What can we do?
Approximation Algorithms > Heuristics.

> Exploit special structure of instances occurring in practise.

» Consider algorithms that do not compute the optimal
solution but provide solutions that are close to optimum.

m ‘m 11 Introduction to Approximation
Harald Ricke Harald Ricke

Why approximation algorithms?

» We need algorithms for hard problems.

> It gives a rigorous mathematical base for studying heuristics.

Definition 57 > It provides a metric to compare the difficulty of various
An -approximation for an optimization problem is a optimization problems.
polynomial-time algorithm that for all instances of the problem > Proving theorems may give a deeper theoretical
produces a solution whose value is within a factor of « of the understanding which in turn leads to new algorithmic
value of an optimal solution. approaches.

Why not?

> Sometimes the results are very pessimistic due to the fact
that an algorithm has to provide a close-to-optimum solution
on every instance.

m 11 Introduction to Approximation m 11 Introduction to Approximation
Harald Ricke Harald Ricke

Definition 58

An optimization problem P = (7, sol, m, goal) is in NPO if
» x €7 can be decided in polynomial time
» v € sol(7) can be verified in polynomial time
» m can be computed in polynomial time
» goal € {min, max}

In other words: the decision problem is there a solution y with
m(x,y) at most/at least z is in NP.

» x is problem instance
> v is candidate solution

> m*(x) cost/profit of an optimal solution

Definition 59 (Performance Ratio)

m(x,y) m*(x) }

R(x,y) = max{ Mmoo mx,y)

m 11 Introduction to Approximation
Harald Ricke

‘m 11 Introduction to Approximation
Harald Ricke

Definition 60 (r-approximation)
An algorithm A is an v-approximation algorithm iff

VxeT:R(x,A(x)) <1,

and A runs in polynomial time.

Definition 61 (PTAS)
A PTAS for a problem P from NPO is an algorithm that takes as
input x € 7 and € > 0 and produces a solution y for x with

R(x,yv)<1+¢€.

The running time is polynomial in |x]|.

approximation with arbitrary good factor... fast?

m 11 Introduction to Approximation
Harald Ricke

‘m 11 Introduction to Approximation
Harald Ricke

Problems that have a PTAS

Scheduling. Given m jobs with known processing times; schedule the
jobs on n machines such that the MAKESPAN is minimized.

Definition 62 (FPTAS)
An FPTAS for a problem P from NPO is an algorithm that takes as
input x € 7 and € > 0 and produces a solution y for x with

R(x,y)<1l+e¢€.

The running time is polynomial in |x| and 1/e.

approximation with arbitrary good factor... fast!

m 11 Introduction to Approximation
Harald Ricke

‘m 11 Introduction to Approximation
Harald Ricke

Problems that have an FPTAS

KNAPSACK. Given a set of items with profits and weights choose a
subset of total weight at most W s.t. the profit is maximized.

Definition 63 (APX - approximable)
A problem P from NPO is in APX if there exist a constant v > 1
and an r-approximation algorithm for P.

constant factor approximation...

m 11 Introduction to Approximation
Harald Ricke

‘m 11 Introduction to Approximation
Harald Ricke

Problems that are in APX

MAXCUT. Given a graph G = (V,E); partition V into two disjoint
pieces A and B s.t. the number of edges between both pieces is
maximized.

MAX-3SAT. Given a 3CNF-formula. Find an assignment to the
variables that satisfies the maximum number of clauses.

m 11 Introduction to Approximation
Harald Ricke

Problems with polylogarithmic approximation guarantees
> Set Cover
» Minimum Multicut
» Sparsest Cut
>

Minimum Bisection

There is an r-approximation with v < @(log®(|x|)) for some
constant c.

Note that only for some of the above problem a matching lower
bound is known.

‘m 11 Introduction to Approximation
Harald Ricke

There are really difficult problems!

Theorem 64

For any constant € > O there does not exist an
Q(n'=¢)-approximation algorithm for the maximum clique
problem on a given graph G with n nodes unless P = NP.

Note that an n-approximation is trivial.

m 11 Introduction to Approximation
Harald Ricke

There are weird problems!
Asymmetric k-Center admits an O(log™ n)-approximation.

There is no o(log™ n)-approximation to Asymmetric k-Center
unless NP ¢ DTIME (n'ogloglogn),

‘m 11 Introduction to Approximation
Harald Ricke

Class APX not important in practise.

Instead of saying problem P is in APX one says problem P admits
a 4-approximation.

One only says that a problem is APX-hard.

m 11 Introduction to Approximation
Harald Ricke

A crucial ingredient for the design and analysis of approximation
algorithms is a technique to obtain an upper bound (for
maximization problems) or a lower bound (for minimization
problems).

Therefore Linear Programs or Integer Linear Programs play a vital
role in the design of many approximation algorithms.

‘m 12 Integer Programs
Harald Ricke

Definition 65
An Integer Linear Program or Integer Program is a Linear Program
in which all variables are required to be integral.

Definition 66
A Mixed Integer Program is a Linear Program in which a subset of
the variables are required to be integral.

m 12 Integer Programs
Harald Racke

Many important combinatorial optimization problems can be
formulated in the form of an Integer Program.

Note that solving Integer Programs in general is
NP-complete!

jﬂ ﬂﬂ 12 Integer Programs
Harald Racke

Set Cover

Given a ground set U, a collection of subsets S;,...,Sy c U,
where the i-th subset S; has weight/cost w;. Find a collection
I<{1,...,k} such that

YueU3diel: ues; (every element is covered)
and

Z w; is minimized.
iel

m 12 Integer Programs
Harald Ricke

Set Cover

m Harald Racke

12 Integer Programs

IP-Formulation of Set Cover

min > WiXi

s.t. VueU Xiyes, Xi > 1
Vie{l,...,k} Xi >
Vie{l,..., k} x; integral

m 12 Integer Programs
Harald Ricke

Vertex Cover

Given a graph G = (V, E) and a weight w,, for every node. Find a
vertex subset S < V of minimum weight such that every edge is

incident to at least one vertex in S.

m Harald Ricke

12 Integer Programs

IP-Formulation of Vertex Cover

min Dvey WyXy
s.t. Ve=(i,j) €E xi+xj = 1
Yv eV xy € 10,1}

Maximum Weighted Matching

Given a graph G = (V, E), and a weight w, for every edge e € E.
Find a subset of edges of maximum weight such that no vertex is

incident to more than one edge.

m 12 Integer Programs
Harald Ricke

Maximum Independent Set

Given a graph G = (V,E), and a weight w,, for every node v € V.
Find a subset S = V of nodes of maximum weight such that no
two vertices in S are adjacent.

max >vey WyXy
s.t. Ve=(i,j) €EE xitxj < 1

max > ecE WeXe
st. VVEV DopceXe =< 1
Ve € E x. € {0,1}
‘m 12 Integer Programs
Harald Racke
Knapsack
Given a set of items {1,...,n}, where the i-th item has weight w;

and profit p;, and given a threshold K. Find a subset
I < {1,...,n} of items of total weight at most K such that the

profit is maximized.

max Dit1 PiXi
s.t. Z?:l wix;i < K
Vie{l,...,n} x; € {0,1}

m 12 Integer Programs
Harald Racke

jﬂ ﬂﬂ 12 Integer Programs
Harald Racke

Relaxations

Definition 67

A linear program LP is a relaxation of an integer program IP if any
feasible solution for IP is also feasible for LP and if the objective
values of these solutions are identical in both programs.

We obtain a relaxation for all examples by writing x; € [0, 1]
instead of x; € {0, 1}.

By solving a relaxation we obtain an upper bound for a
maximization problem and a lower bound for a minimization

problem.

m 12 Integer Programs
Harald Ricke

‘m 12 Integer Programs
Harald Ricke

Relations

Maximization Problems:

\ OPT(DUAL) \ \ FEASIBLE(DUAL) |

(Ve l l
Minimization Problems:
| FEASIBLE(DUAL) | IOPT(DUAL)I

0o

Technique 1: Round the LP solution.

We first solve the LP-relaxation and then we round the fractional
values so that we obtain an integral solution.

Set Cover relaxation:

min Zlle WiXi
s.t. VueU Diyes;Xi = 1
Vie {l,...,k} x; € [0,1]

Let f,, be the number of sets that the element u is contained in
(the frequency of u). Let f = maxy {f,} be the maximum
frequency.

m 12 Integer Programs
Harald Racke

m 13.1 Deterministic Rounding
Harald Ricke

Technique 1: Round the LP solution.

Rounding Algorithm:
Set all x;-values with x; > L to 1. Set all other x;-values to 0.

m 13.1 Deterministic Rounding
Harald Ricke

Technique 1: Round the LP solution.

Lemma 68
The rounding algorithm gives an f-approximation.

Proof: Every u € U is covered.
> We know that >;.,cs, X; = 1.
» The sum contains at most f,, < f elements.
» Therefore one of the sets that contain u must have x; > 1/7.
>

This set will be selected. Hence, u is covered.

‘m 13.1 Deterministic Rounding
Harald Ricke

Technique 1: Round the LP solution.

The cost of the rounded solution is at most f - OPT.

k
>wi< > wilf - xi)
i=1

iel
= f - cost(x)
< f-0PT.

m 13.1 Deterministic Rounding
Harald Ricke

Technique 2: Rounding the Dual Solution.

Relaxation for Set Cover

Primal: Dual:
min Diel WiXi max et Yu
s.t.Vu Diyes, Xi =1 s.t. Vi Dyues, Yu < Wi
x;i =0 yu =0

‘m 13.2 Rounding the Dual
Harald Ricke

Technique 2: Rounding the Dual Solution.

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is

tight. This means forall i € I

> yu=w;

UWUES;

Technique 2: Rounding the Dual Solution.

Lemma 69
The resulting index set is an f-approximation.

Proof:
Every u € U is covered.

> Suppose there is a u that is not covered.
> This means >.,.,cs, Yu < w; for all sets S; that contain wu.

» But then y,, could be increased in the dual solution without
violating any constraint. This is a contradiction to the fact
that the dual solution is optimal.

m 13.2 Rounding the Dual
Harald Ricke

‘m 13.2 Rounding the Dual
Harald Ricke

Technique 2: Rounding the Dual Solution.

Proof:

Jwi=D, > Yu

iel iel uw:ues;
=>Hiel:uesSil vu
u
= quyu
u
= fzyu
u

< fcost(x™)
< f-OPT

Let I denote the solution obtained by the first rounding algorithm
and I’ be the solution returned by the second algorithm. Then

IcI .

This means I’ is never better than I.

v

Suppose that we take S; in the first algorithm. l.e., i € I.

v

This means x; > %

v

Because of Complementary Slackness Conditions the
corresponding constraint in the dual must be tight.

v

Hence, the second algorithm will also choose S;.

m 13.2 Rounding the Dual
Harald Ricke

‘m 13.2 Rounding the Dual
Harald Ricke

Technique 3: The Primal Dual Method

The previous two rounding algorithms have the disadvantage that
it is necessary to solve the LP. The following method also gives an
f-approximation without solving the LP.

For estimating the cost of the solution we only required two
properties.

1. The solution is dual feasible and, hence,

Zyu < cost(x™) < OPT
u

where x* is an optimum solution to the primal LP.

2. The set I contains only sets for which the dual inequality is
tight.

Of course, we also need that I is a cover.

m 13.3 Primal Dual Technique
Harald Ricke

Technique 3: The Primal Dual Method

Algorithm 1 PrimalDual

1y <0

2.1 -2
3: while exists u ¢ (J;jc; Si do
4 increase dual variable y,, until constraint for some
new set Sy becomes tight
I—1uU{{¥}

%)

‘m 13.3 Primal Dual Technique
Harald Ricke

Technique 4: The Greedy Algorithm

Algorithm 1 Greedy

g

. S;j—S; forall j

while I not a set cover do
{ — arg min g g ILSU—JJI
I —Tu{t}

S’j <—S’j—Sy for all j

A 1 AW N~

In every round the Greedy algorithm takes the set that covers
remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still
uncovered elements in the set is minimized.

m 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Lemma 70
Given positive numbers a,...,ay and by,..., by, and
Sc{l,...,k} then

. ag s Aj a;
min l<Zl€S L« max =&

i bi Xiesbi i b

jﬂ ﬂﬂ 13.4 Greedy
Harald Racke

Technique 4: The Greedy Algorithm

Let 1y denote the number of elements that remain at the
beginning of iteration £. n1 = n = |U| and ns,1 = 0 if we need s
iterations.

In the £-th iteration

. Wi zjeOPT w OPT OPT
min —= < ~ = — <
i 1S Yjeorr IS Xjecopr IS5 e
since an optimal algorithm can cover the remaining n, elements
with cost OPT.

Let fj be a subset that minimizes this ratio. Hence,
5 OPT

m 13.4 Greedy
Harald Ricke

Technique 4: The Greedy Algorithm

Adding this set to our solution means nyp,; = ny — Ifjl.

- IS;IOPT ny—mny
B ny ny

- OPT

wj

‘m 13.4 Greedy
Harald Ricke

Technique 4: The Greedy Algorithm

S
zwjgzw.op]"

jel 0=1 ne

N
SOPTZ(1+ L +---+1>
o\ ny—1 Npq +1

&1

=O0PT > —

-1t

=Hy -OPT <OPT(Inn+1) .

m 13.4 Greedy
Harald Ricke

Technique 4: The Greedy Algorithm

A tight example:

jﬂ ﬂﬂ 13.4 Greedy
Harald Ricke

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S; uniformly at random with probability 1 — x; (for all j).

Version A: Repeat rounds until you nearly have a cover. Cover
remaining elements by some simple heuristic.

Version B: Repeat for s rounds. If you have a cover STOP.
Otherwise, repeat the whole algorithm.

m 13.5 Randomized Rounding
Harald Ricke

Probability that u € U is not covered (in one round):

Pr[u not covered in one round]
=[] a-xp=< [] e™
JUES; JUeS;

_ e*Zj:ueSij < 671 .

Probability that u € U is not covered (after £ rounds):

1
Pr[u not covered after £ round] < o0

‘m 13.5 Randomized Rounding
Harald Ricke

Pr[3u € U not covered after £ round]

= Pr[u; not covered V u» not covered V ... V u, not covered |
< ZPr[ui not covered after £ rounds] < ne ! .
i

Lemma 71
With high probability O (log n) rounds suffice.

With high probability:
For any constant « the number of rounds is at most @ (logn) with
probability at least 1 — n~%.

m 13.5 Randomized Rounding
Harald Racke

Proof: We have

Pr[#rounds > (x + 1) Inn] < ne~(@+*bnn _ -

m 13.5 Randomized Rounding
Harald Racke

Expected Cost

> Version A.
Repeat for s = («x + 1) Inn rounds. If you don’t have a cover
simply take for each element u the cheapest set that
contains u.

E[cost] < (x+1)Inn-cost(LP)+(n-OPT)n % = O(Inn)-OPT

m 13.5 Randomized Rounding
Harald Ricke

Expected Cost

> Version B.
Repeat for s = (@ + 1) Inn rounds. If you don’t have a cover
simply repeat the whole process.

E[cost] = Pr[success] - E[cost | success]

+ Pr[no success] - E[cost | no success]

This means

E[cost | success]

= — (E[cost] — Pr[no success] - E[cost | no success])
Pr[succ.]

1
< mE[COSt] =< m((x + 1)Inn - cost(LP)
<2(x+1)Inn - OPT

form>2and x> 1.

‘m 13.5 Randomized Rounding
Harald Ricke

Randomized rounding gives an O(log n) approximation. The
running time is polynomial with high probability.

Theorem 72 (without proof)
There is no approximation algorithm for set cover with
approximation guarantee better than %logn unless NP has

quasi-polynomial time algorithms (algorithms with running time
2poly(logn))_

m 13.5 Randomized Rounding
Harald Racke

Integrality Gap

The integrality gap of the SetCover LP is Q(logn).

» n=2k_1

> Elements are all vectors X over GF[2] of length k (excluding
zero vector).

> Every vector y defines a set as follows

— —

Sy i={x|xTy =1}

» each set contains 2K~1 vectors; each vector is contained in

2k-1 sets
_ 1 _ 2 . . .
> Xi = 51 = 3,7 is fractional solution.

m 13.5 Randomized Rounding
Harald Racke

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of Q(logn).

m 13.5 Randomized Rounding
Harald Ricke

Techniques:

> Deterministic Rounding
Rounding of the Dual
Primal Dual
Greedy
Randomized Rounding

Local Search

vV V. v v Vv Y

Rounding Data + Dynamic Programming

‘m 13.5 Randomized Rounding
Harald Ricke

Scheduling Jobs on Identical Parallel Machines

Given n jobs, where job j € {1,...,n} has processing time p;.
Schedule the jobs on m identical parallel machines such that the
Makespan (finishing time of the last job) is minimized.

min L
s.t. Vmachinesi X;p;-xj; < L
Vjobs j Xixji=1
Vi, J xji € {0,1}

Here the variable x; ; is the decision variable that describes
whether job j is assigned to machine 1.

m 14.1 Local Search
Harald Racke

Lower Bounds on the Solution

Let for a given schedule C; denote the finishing time of machine
J, and let Crnax be the makespan.

Let C. denote the makespan of an optimal solution.

Clearly
Crhax = Maxpj
J

as the longest job needs to be scheduled somewhere.

‘m 14.1 Local Search
Harald Racke

Lower Bounds on the Solution

The average work performed by a machine is % 2P
Therefore,

1
Crflax = m %:p.i

m 14.1 Local Search
Harald Ricke

Local Search

A local search algorithm successively makes certain small
(cost/profit improving) changes to a solution until it does not find
such changes anymore.

It is conceptionally very different from a Greedy algorithm as a
feasible solution is always maintained.

Sometimes the running time is difficult to prove.

‘m 14.1 Local Search
Harald Ricke

Local Search for Scheduling

Local Search Strategy: Take the job that finishes last and try to
move it to another machine. If there is such a move that reduces
the makespan, perform the switch.

REPEAT

m 14.1 Local Search
Harald Racke

Local Search Analysis

Let £ be the job that finishes last in the produced schedule.
Let Sy be its start time, and let Cp be its completion time.

Note that every machine is busy before time Sy, because
otherwise we could move the job £ and hence our schedule would
not be locally optimal.

m 14.1 Local Search
Harald Racke

We can split the total processing time into two intervals one from
0 to Sy the other from Sy to Cy.

The interval [Sy, Cp] is of length py < Cli.«

During the first interval [0, S,] all processors are busy, and,
hence, the total work performed in this interval is

m-Sp< > pj.
j=l

Hence, the length of the schedule is at most

1 1 1 1
+—>pi=(0-)pp+-—>pj<(2-—)Ck
pe mjil)pj (m)pl’ m - pJ<(m) max

m 14.1 Local Search
Harald Ricke

A Tight Example

Se
~ Sy +
pe~Set T
ALG Sp+ 24+ Ao 1
_2ttPe -1 _o,_ Py
0T~ pr 14y om
Se
pe

A Greedy Strategy

List Scheduling:
Order all processes in a list. When a machine runs empty assign
the next yet unprocessed job to it.

Alternatively:
Consider processes in some order. Assign the i-th process to the
least loaded machine.

It is easy to see that the result of these greedy strategies fulfill the
local optimally condition of our local search algorithm. Hence,
these also give 2-approximations.

m 14.2 Greedy
Harald Racke

A Greedy Strategy

Lemma 73

If we order the list according to non-increasing processing times
the approximation guarantee of the list scheduling strategy
improves to 4/3.

jﬂ ﬂﬂ 14.2 Greedy
Harald Racke

Proof:

> Let p; > - - - > py denote the processing times of a set of
jobs that form a counter-example.

» Wilog. the last job to finish is n (otw. deleting this job gives
another counter-example with fewer jobs).

> If py < Cihax/3 the previous analysis gives us a schedule
length of at most

4

3

Hence, pn > Ch.x/3-

> This means that all jobs must have a processing time
> Clax/3-

» But then any machine in the optimum schedule can handle at
most two jobs.

> For such instances Longest-Processing-Time-First is optimal.

m 14.2 Greedy
Harald Ricke

When in an optimal solution a machine can have at most 2 jobs
the optimal solution looks as follows.

P14 P13 P12 P11 P10 P9 P8

p1 p2 p3 p4 ps Pe p7

‘m 14.2 Greedy
Harald Ricke

> We can assume that one machine schedules p; and p, (the
largest and smallest job).

» If not assume wlog. that p; is scheduled on machine A and
pPn on machine B.

> Let pa and pp be the other job scheduled on A and B,
respectively.

> p1+pn <p1+paand pa+ pp < p1 + pa, hence scheduling
p1 and p, on one machine and p4 and pp on the other,
cannot increase the Makespan.

> Repeat the above argument for the remaining machines.

m 14.2 Greedy
Harald Racke

Tight Example

> 2m + 1 jobs

> 2 jobs with length2m —1,2m —2,...,m+1 2m — 2 jobs in
total)

> 3 jobs of length m

jﬂ ﬂﬂ 14.2 Greedy
Harald Racke

15 Rounding Data + Dynamic Programming

Knapsack:

Given a set of items {1,...,n}, where the i-th item has weight
w;i € N and profit p; € N, and given a threshold W. Find a subset
I <{1,...,n} of items of total weight at most W such that the
profit is maximized (we can assume each w; < W).

max i1 piXi
s.t. Stiwix; <= W
Vie{l,...,n} x; € {0,1}

m 15.1 Knapsack
Harald Ricke

15 Rounding Data + Dynamic Programming

Algorithm 1 Knapsack

1. A(1) < [(0,0), (p1,w1)]

2: forj—2 to ndo

3 A(j) = AG-1)

4: for each (p,w) €e A(j—1) do
5

6

7

if w+w; <W then
add (p +pj,w +wj) to A(j)
: remove dominated pairs from A(j)
8: return maXpw)cAmn) P

The running time is O(n - min{W, P}), where P = >, p; is the
total profit of all items. This is only pseudo-polynomial.

‘m 15.1 Knapsack
Harald Ricke

15 Rounding Data + Dynamic Programming

Definition 74

An algorithm is said to have pseudo-polynomial running time if
the running time is polynomial when the numerical part of the
input is encoded in unary.

m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let M be the maximum profit of an element.
Set u:=eM/n.
Set p; := | pi/u] for all i.

vV v.v Y

Run the dynamic programming algorithm on this revised
instance.

Running time is at most

ompP)=0(ny p;)=0(ny, [EJ\IZ;nD < (9(12) :

m 15.1 Knapsack
Harald Racke

15 Rounding Data + Dynamic Programming

Let S be the set of items returned by the algorithm, and let O be
an optimum set of items.

D.Pi=p P

ieS ieS
=K. P
i€e0
> > pi— 0l
ie0
= Z pi—nu
i€O
=D pi—eM
i€cO
> (1 -€)OPT .

m 15.1 Knapsack
Harald Ricke

Scheduling Revisited

The previous analysis of the scheduling algorithm gave a
makespan of

1
po- Z Pi+pe
j=l

where £ is the last job to complete.

Together with the obervation that if each p; > %C&‘m then LPT is
optimal this gave a 4/3-approximation.

‘m 15.2 Scheduling Revisited
Harald Ricke

15.2 Scheduling Revisited

Partition the input into long jobs and short jobs.

A job j is called short if

1
PjSWZiPi

Idea:
1. Find the optimum Makespan for the long jobs by brute force.

2. Then use the list scheduling algorithm for the short jobs,
always assigning the next job to the least loaded machine.

m 15.2 Scheduling Revisited
Harald Racke

We still have a cost of

1
- Z pj+pe
jl

where £ is the last job (this only requires that all machines are
busy before time S)).

If £ is a long job, then the schedule must be optimal, as it consists
of an optimal schedule of long jobs plus a schedule for short jobs.

If £ is a short job its length is at most
pe<2;pjl(mk)

which is at most C.. /k.

‘m 15.2 Scheduling Revisited
Harald Racke

Hence we get a schedule of length at most

(1 + %)Crﬁax

There are at most km long jobs. Hence, the number of
possibilities of scheduling these jobs on m machines is at most
mkm, which is constant if m is constant. Hence, it is easy to
implement the algorithm in polynomial time.

Theorem 75

The above algorithm gives a polynomial time approximation
scheme (PTAS) for the problem of scheduling n jobs on m
identical machines if m is constant.

We choose k = [%].

m 15.2 Scheduling Revisited
Harald Ricke

How to get rid of the requirement that m is constant?

We first design an algorithm that works as follows:

On input of T it either finds a schedule of length (1 + %)T or
certifies that no schedule of length at most T exists (assume
Tz 3,p)).

We partition the jobs into long jobs and short jobs:
> A jobis long if its size is larger than T/k.

> Otw. it is a short job.

‘m 15.2 Scheduling Revisited
Harald Ricke

v

We round all long jobs down to multiples of T'/k?.

v

For these rounded sizes we first find an optimal schedule.

v

If this schedule does not have length at most T we conclude
that also the original sizes don’t allow such a schedule.

v

If we have a good schedule we extend it by adding the short
jobs according to the LPT rule.

m 15.2 Scheduling Revisited
Harald Racke

After the first phase the rounded sizes of the long jobs assigned
to a machine add up to at most T.

There can be at most k (long) jobs assigned to a machine as otw.
their rounded sizes would add up to more than T (note that the
rounded size of a long job is at least T /k).

Since, jobs had been rounded to multiples of T/k? going from
rounded sizes to original sizes gives that the Makespan is at most

(1+%)T.

‘m 15.2 Scheduling Revisited
Harald Racke

During the second phase there always must exist a machine with
load at most T, since T is larger than the average load.
Assigning the current (short) job to such a machine gives that the
new load is at most

m 15.2 Scheduling Revisited
Harald Ricke

Running Time for scheduling large jobs: There should not be a
job with rounded size more than T as otw. the problem becomes
trivial.

Hence, any large job has rounded size of k%T forie {k,..., k%}.
Therefore the number of different inputs is at most nk’
(described by a vector of length k2 where, the i-th entry describes
the number of jobs of size k—iZT). This is polynomial.

The schedule/configuration of a particular machine x can be
described by a vector of length k? where the i-th entry describes
the number of jobs of rounded size k—igT assigned to x. There are
only (k + 1)¥ different vectors.

This means there are a constant number of different machine
configurations.

‘m 15.2 Scheduling Revisited
Harald Ricke

Let OPT(ny,...,nk2) be the number of machines that are required
to schedule input vector (ni,...,n2) with Makespan at most T.
If OPT(ny,...,nE2) < m we can schedule the input.

We have

OPT(nl,...,nkz)

0 (nl,...,nkz):O
_J 1+ min OPT(n;—sy,...,n2 —Sk2) (M1,...,M2) 20
($15-82)EC
00 otw.

where C is the set of all configurations.

Hence, the running time is roughly (k + 1)K nk* ~ (nk)¥".

m 15.2 Scheduling Revisited
Harald Racke

We can turn this into a PTAS by choosing k = [1/€] and using

binary search. This gives a running time that is exponential in
1/€.

Can we do better?
Scheduling on identical machines with the goal of minimizing
Makespan is a strongly NP-complete problem.

Theorem 76
There is no FPTAS for problems that are strongly NP-hard.

‘m 15.2 Scheduling Revisited
Harald Racke

> Suppose we have an instance with polynomially bounded
processing times p; < q(n)
> Wesetk:=[2nqg(n)| =20PT

» Then 1 1
ALG < (1 n E) OPT < OPT +

> But this means that the algorithm computes the optimal
solution as the optimum is integral.

» This means we can solve problem instances if processing
times are polynomially bounded

» Running time is O(poly(n,k)) = O(poly(n))

> For strongly NP-complete problems this is not possible
unless P=NP

m 15.2 Scheduling Revisited
Harald Ricke

More General

Let OPT(ny,...,n4) be the number of machines that are required to
schedule input vector (ny,...,1n4) with Makespan at most T
(A: number of different sizes).

If OPT(nq,...,n4) < m we can schedule the input.

OPT(ny,...,1n4)

0 (ny,...,na) =0
_J 1+ min OPT(ny —51,...,M4—54) M1,...,14) 20
(51,-54)EC
0o otw.

where C is the set of all configurations.

|C| < (B+1)4, where B is the number of jobs that possibly can fit on
the same machine.

The running time is then O((B + 1)*n") because the dynamic
programming table has just n# entries.

Bin Packing

Given n items with sizes s1,..., s, where
1>51>---2>25,>0.

Pack items into a minimum number of bins where each bin can
hold items of total size at most 1.

Theorem 77
There is no p-approximation for Bin Packing with p < 3/2 unless
P = NP.

Bin Packing

Proof

> In the partition problem we are given positive integers
by,...,by with B =3, b; even. Can we partition the integers
into two sets S and T s.t.

> bi=> b ?

ieS ieT

> We can solve this problem by setting s; := 2b;/B and asking
whether we can pack the resulting items into 2 bins or not.

> A p-approximation algorithm with p < 3/2 cannot output 3
or more bins when 2 are optimal.

> Hence, such an algorithm can solve Partition.

m 15.3 Bin Packing
Harald Ricke

m 15.3 Bin Packing
Harald Ricke

Bin Packing

Definition 78

An asymptotic polynomial-time approximation scheme (APTAS) is
a family of algorithms {Ac} along with a constant ¢ such that A
returns a solution of value at most (1 + €)OPT + ¢ for
minimization problems.

> Note that for Set Cover or for Knapsack it makes no sense to
differentiate between the notion of a PTAS or an APTAS
because of scaling.

» However, we will develop an APTAS for Bin Packing.

m 15.3 Bin Packing
Harald Racke

Bin Packing

Again we can differentiate between small and large items.

Lemma 79

Any packing of items into £ bins can be extended with items of
size at most y s.t. we use only max{?{, %YSIZE(I) + 1} bins,
where SIZE(I) = > ; s; is the sum of all item sizes.

> If after Greedy we use more than ¥ bins, all bins (apart from
the last) must be full to at least 1 — y.

» Hence, ¥ (1 — y) < SIZE(I) where 7 is the number of
nearly-full bins.

» This gives the lemma.

m 15.3 Bin Packing
Harald Racke

Choose y = ¢/2. Then we either use £ bins or at most

1
1-¢€/2

-OPT+1<(1+€)-0PT+1
bins.

It remains to find an algorithm for the large items.

m 15.3 Bin Packing
Harald Ricke

Bin Packing

Linear Grouping:
Generate an instance I’ (for large items) as follows.
> Order large items according to size.

> Let the first k items belong to group 1; the following k items
belong to group 2; etc.

> Delete items in the first group;

» Round items in the remaining groups to the size of the
largest item in the group.

m 15.3 Bin Packing
Harald Ricke

Linear Grouping

m 15.3 Bin Packing
Harald Racke

Lemma 80
OPT(I') < OPT(I) < OPT(I') + k

Proof 1:

> Any bin packing for I gives a bin packing for I’ as follows.

> Pack the items of group 2, where in the packing for I the
items for group 1 have been packed;

> Pack the items of groups 3, where in the packing for I the
items for group 2 have been packed;

m 15.3 Bin Packing
Harald Racke

Lemma 81
OPT(I') < OPT() < OPT(I") + k

Proof 2:
> Any bin packing for I’ gives a bin packing for I as follows.
» Pack the items of group 1 into k new bins;

> Pack the items of groups 2, where in the packing for I’ the
items for group 2 have been packed;

m 15.3 Bin Packing
Harald Racke

Assume that our instance does not contain pieces smaller than
€/2. Then SIZE(I) > en/2.

We set k = | eSIZE(I)].
Then n/k < n/|le?n/2] < 4/e? (note that | | > «/2 for o« > 1).

Hence, after grouping we have a constant number of piece sizes
(4/€?) and at most a constant number (2/¢€) can fit into any bin.

We can find an optimal packing for such instances by the previous
Dynamic Programming approach.

> cost (for large items) at most
OPT(I') + k < OPT(I) + €SIZE(I) < (1 + €)OPT(I)

> running time O((%n)4/52).

Can we do better?

In the following we show how to obtain a solution where the
number of bins is only

OPT(I) + O(log® (SIZE(I))) .

Note that this is usually better than a guarantee of

(1+¢€)OPT(I)+1 .

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Configuration LP

Change of Notation:
> Group pieces of identical size.

> Let 51 denote the largest size, and let b; denote the number
of pieces of size s;.

> s is second largest size and b> number of pieces of size s;

> s, smallest size and b;,, number of pieces of size s;;,.

‘m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Configuration LP

A possible packing of a bin can be described by an m-tuple
(t1,...,tm), where t; describes the number of pieces of size s;.
Clearly,

Zti-sisl .
i

We call a vector that fulfills the above constraint a configuration.

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Configuration LP

Let N be the number of configurations (exponential).

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T; has T}; pieces of size s;).

min 21}’:1 Xj

s.t. Vie{l...m} Z?]:]_ Tjin = b;
vje{l,...,N} x;j = 0
Vje{l,...,N} x; Integral

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

How to solve this LP?

later...

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

We can assume that each item has size at least 1/SIZE([).

‘m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Harmonic Grouping

> Sort items according to size (monotonically decreasing).

> Process items in this order; close the current group if size of
items in the group is at least 2 (or larger). Then open new

group.
> l.e., G is the smallest cardinality set of largest items s.t.
total size sums up to at least 2. Similarly, for Go,...,Gy_1.

» Only the size of items in the last group G, may sum up to
less than 2.

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Harmonic Grouping

From the grouping we obtain instance I’ as follows:

» Round all items in a group to the size of the largest group
member.

> Delete all items from group G; and G, .
» For groups Go,...,Gy_1 delete n; — n;_; items.

» Observe that n; > n;_;.

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Lemma 82
The number of different sizes in I’ is at most SIZE(I) /2.

» Each group that survives (recall that G; and G, are deleted)
has total size at least 2.

» Hence, the number of surviving groups is at most SIZE(I)/2.

> All items in a group have the same size in I'.

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Lemma 83
The total size of deleted items is at most O (log(SIZE(I))).

» The total size of items in G and G, is at most 6 as a group
has total size at most 3.

» Consider a group G; that has strictly more items than G;_;.
> It discards n; — n;_; pieces of total size at most
PR— . nl
37’11 ni-1 < Z §

i Jj=ni-1+1 J

since the average piece size is only 3/n;.
» Summing over all i that have n; > n;_; gives a bound of at
most g
> = < 0(og(SIZE())) .
=17
(note that n,, < SIZE(I) since we assume that the size of each
item is at least 1/SIZE(I)).

Algorithm 1 BinPack
1: if SIZE(I) < 10 then
2: pack remaining items greedily
: Apply harmonic grouping to create instance I’; pack
discarded items in at most O (log(SIZE(I))) bins.
4: Let x be optimal solution to configuration LP
5: Pack |x;| bins in configuration T; for all j; call the
packed instance I;.
6: Let I> be remaining pieces from I’
7: Pack I via BinPack(I>)

w

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Analysis

OPTLP(Il) + OPTLP(Iz) < OPTLP(I,) < OPTLP(I)

Proof:

> Each piece surviving in I’ can be mapped to a piece in I of no
lesser size. Hence, OPTip(I") < OPTp(I)

> [xj]| is feasible solution for I} (even integral).

> x;— [xj]|is feasible solution for I>.

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Analysis

Each level of the recursion partitions pieces into three types
1. Pieces discarded at this level.
2. Pieces scheduled because they are in I;.

3. Pieces in I are handed down to the next level.

Pieces of type 2 summed over all recursion levels are packed into
at most OPTrp many bins.

Pieces of type 1 are packed into at most
O(log(SIZE(I))) - L

many bins where L is the number of recursion levels.

Analysis

We can show that SIZE(I>) < SIZE(I)/2. Hence, the number of
recursion levels is only O(10g(SIZE(Iorigina1))) in total.

» The number of non-zero entries in the solution to the
configuration LP for I’ is at most the number of constraints,
which is the number of different sizes (< SIZE(I)/2).

> The total size of items in I> can be at most 2?’21 xj—lxj]
which is at most the number of non-zero entries in the
solution to the configuration LP.

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

‘m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

How to solve the LP?

Let T1,..., Ty be the sequence of all possible configurations (a
configuration T has Tj; pieces of size s;).
In total we have b; pieces of size s;.

Primal
min Z]JV:lxj
s.t. Vie{l...m} ZJ}IZITJ'I'XJ' > b;
Vje{l,...,N} xj = 0
Dual
max >.i% vibi
st. Vje{l,....N} SN Tiyi < 1
Vie{l,...,m} yvi = 0

Separation Oracle

Suppose that | am given variable assignment for the dual.
How do I find a violated constraint?

| have to find a configuration T; = (Tj1,..., Tj;,) that
> is feasible, i.e.,

m
ZTﬁ'yiél,
i-1

» and has a large profit

m
> Tjiyi>1
i=1

But this is the Knapsack problem.

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

Separation Oracle

We have FPTAS for Knapsack. This means if a constraint is
violated with 1 + €’ = 1 + =, we find it, since we can obtain at
least (1 — €) of the optimal profit.

The solution we get is feasible for:

Dual’
max 2% vibi
stt. Vje{l,....N} X Tjiiyi < 1+¢€
Vie{l,...,m} yvi = 0
Primal’
min (1+¢€) Z];]:l X
S.t. Vie{l...m} zIJyZITJ’in > b
vje{l,...,N} xj = 0

Separation Oracle
If the value of the computed dual solution (which may be
infeasible) is z then

OPT <z < (1+¢€)OPT

How do we get good primal solution (not just the value)?

» The constraints used when computing z certify that the
solution is feasible for DUAL'.

» Suppose that we drop all unused constraints in DUAL. We
will compute the same solution feasible for DUAL'.

» Let DUAL” be DUAL without unused constraints.

» The dual to DUAL" is PRIMAL where we ignore variables for
which the corresponding dual constraint has not been used.

» The optimum value for PRIMAL" is at most (1 + ¢’)OPT.

> We can compute the corresponding solution in polytime.

This gives that overall we need at most
(1 + €")OPTip(I) + O(log? (SIZE(I)))
bins.

We can choose €’ = ﬁ as OPT < #items and since we have a fully
polynomial time approximation scheme (FPTAS) for knapsack.

m 15.4 Advanced Rounding for Bin Packing
Harald Ricke

16.1 MAXSAT

Problem definition:
» n Boolean variables

» m clauses Cq,...,Cy,. For example

C7 = X3V X5 V X9

> Non-negative weight w; for each clause Cj.

> Find an assignment of true/false to the variables sucht that
the total weight of clauses that are satisfied is maximum.

‘m 16.1 MAXSAT
Harald Racke

16.1 MAXSAT

Terminology:
> Avariable x; and its negation X; are called literals.

» Hence, each clause consists of a set of literals (i.e., no
duplications: x; Vv x; vV X; is not a clause).

» We assume a clause does not contain x; and x; for any i.

> x; is called a positive literal while the negation X; is called a
negative literal.

> For a given clause C; the number of its literals is called its
length or size and denoted with ;.

» Clauses of length one are called unit clauses.

m 16.1 MAXSAT
Harald Racke

MAXSAT: Flipping Coins

Set each x; independently to true with probability % (and, hence,
to false with probability %, as well).

m 16.1 MAXSAT
Harald Racke

Define random variable X; with

{ 1 if C; satisfied
Xj =
’ 0 otw.

Then the total weight W of satisfied clauses is given by

W=>w;iX;
j

m 16.1 MAXSAT
Harald Racke

E[W] = ZwJ'E[Xj]
J
= ijPr[Cj is satisified]
j

Su(1-(3)")
PR

1
5 OPT

v

[\

m 16.1 MAXSAT
Harald Racke

MAXSAT: LP formulation

> Let for a clause C;, P; be the set of positive literals and N;
the set of negative literals.

CJ'= \/xiv \/)_Ci

i€P; iEN;
max 2,052
st Vj Diep; Yi+ 2ien;,(L-yi) = z;j
Vi yi € {0,1}
Vi zj <1

MAXSAT: Randomized Rounding

Set each x; independently to true with probability y; (and, hence,
to false with probability (1 — y;)).

m 16.1 MAXSAT
Harald Racke

m 16.1 MAXSAT
Harald Racke

Lemma 84 (Geometric Mean < Arithmetic Mean)
For any nonnegative a1, ...,ay

k 1/k
nai =<
i=1

&=

k
2. ai
i=1

Definition 85
A function f on an interval I is concave if for any two points s and
v from I and any A € [0, 1] we have

SAs+ 1 -2)7r) = Af(s)+ (1 -A)f(r)

Lemma 86
Let f be a concave function on the interval [0, 1], with f(0) = a
and f(1) =a +b. Then

SQA) = f((1-A)0+A1)
> (1-A)f(0)+Af(1)
=a+Ab

for A € [0,1].

m 16.1 MAXSAT
Harald Racke

m 16.1 MAXSAT
Harald Racke

Pr[C; not satisfied] =

IA

IA

[Ta-») [T »i

i€P; ieN;

_ ¢

1

7| 2=+ > wi
I \iep ieN;

— EJ
1—% D yi+t z(l_yi))

J \iep; i€N;

)
4

m Harald Racke

16.1 MAXSAT

The function f(z) =1- (1 - %)") is concave. Hence,

A\ i
Pr[C; satisfied] = 1 — (- ZJ)
t

[i-(-3) =

r -1 z -2 .
f(z) = —7[1 — ?] < 0 for z € [0, 1]. Therefore, f is
concave.

m 16.1 MAXSAT
Harald Racke

E[W] = > w;Pr[Cj is satisfied]

J

> %wjzj [1 - (1 - é)ﬂj}

2(1—1)OPT.

e

m Harald Ricke

16.1 MAXSAT

MAXSAT: The better of two

Theorem 87
Choosing the better of the two solutions given by randomized
rounding and coin flipping yields a %-approximation.

m 16.1 MAXSAT
Harald Racke

Let Wy be the value of randomized rounding and W» the value
obtained by coin flipping.

E[max{Wi, W2}]
> E[3W1 + 3W>]

e () 3l 0))
roali((5)) 200

J

v
M
£
N

N

v

3 .
;s for all integers

\%
- |
o
av]
=

m 16.1 MAXSAT
Harald Racke

f)

0.9 \
0.8

0.6
—— randomized rounding
0.5 —— flipping coins
- average
I I
1 2 3 4 5 6

¢

m 16.1 MAXSAT
Harald Racke

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability
that a variable is set to 1/true was exactly the value of the
corresponding variable in the linear program.

We could define a function f:[0,1] — [0, 1] and set x; to true
with probability f(y;).

m 16.1 MAXSAT
Harald Racke

MAXSAT: Nonlinear Randomized Rounding

Let f:[0,1] — [0,1] be a function with

1-4%< f(x) <41

Theorem 88
Rounding the LP-solution with a function f of the above form
gives a %-approximation.

m 16.1 MAXSAT
Harald Racke

4x—1
—1—-4x

Pr[C; not satisfied]

[Ta-ro [] fon

1EP) LEN;
< []4]+
icp; ieN;

_ 4*(21'6}7] Yit2ien;(1-¥i))

< 47%j

m 16.1 MAXSAT
Harald Racke

m 16.1 MAXSAT
Harald Racke

The function g(z) = 1 — 477 is concave on [0, 1]. Hence,

Pr[C;j satisfied] =1 -47%/ > sz .

Therefore,

E[W] = > w,Pr[C; satisfied] > %ijzj > ZOPT
J J

m 16.1 MAXSAT
Harald Racke

Can we do better?

Not if we compare ourselves to the value of an optimum
LP-solution.

Definition 89 (Integrality Gap)

The integrality gap for an ILP is the worst-case ratio over all
instances of the problem of the value of an optimal IP-solution to
the value of an optimal solution to its linear programming
relaxation.

Note that the integrality is less than one for maximization
problems and larger than one for minimization problems (of
course, equality is possible).

Note that an integrality gap only holds for one specific ILP
formulation.

Lemma 90
Our ILP-formulation for the MAXSAT problem has integrality gap
at most 5.
max 2 iWjzj
st Vj Xiep; Vit 2ien;(1—>i) = zj
Vi yi € 10,1}
Vj zZj = 1

Consider: (x1 VXx2) A (X1 VX2) A (X1 VX2)A(X1V X2)
> any solution can satisfy at most 3 clauses
> we can set 1 = yv» = 1/2 in the LP; this allows to set
Zl=22=23=Z4=1

» hence, the LP has value 4.

MaxCut

MaxCut

Given a weighted graph G = (V,E,w), w(v) = 0, partition the
vertices into two parts. Maximize the weight of edges between
the parts.

Trivial 2-approximation

m 16.1 MAXSAT
Harald Racke

jﬂ ﬂﬂ 16.2 MAXCUT
Harald Racke

Semidefinite Programming

max / min 2.i,j CijXij
st Vk 2ijkdijkXij = bk
Vi, j Xij = Xji

X = (xij) is psd.

> linear objective, linear contraints

> we can constrain a square matrix of variables to be
symmetric positive definite

Note that wlog. we can assume that all variables appear in this matrix. Suppose 1
I

we have a non-negative scalar z and want to express something like \
I

Zijaijkxij+2:bk |

1
i where xij are variables of the positive semidefinite matrix. We can add z as a
. o] . |
 diagonal entry xpp, and additionally introduce constraints xy, = 0 and x,p = 0. ,

Vector Programming

max / min >4 cij(vivy)
s.t. Vk Zi’j,kaijk(vaj) = by
Vi € R

> variables are vectors in n-dimensional space

> objective functions and contraints are linear in inner
products of the vectors

This is equivalent!

jﬂ ﬂﬂ 16.2 MAXCUT
Harald Racke

Fact [without proof]
We (essentially) can solve Semidefinite Programs in polynomial
time...

m 16.2 MAXCUT
Harald Racke

Quadratic Programs

Quadratic Program for MaxCut:

max %Zi,jwij(l—yiyj)
Vi Yi € {—1,1}

This is exactly MaxCut!

jﬂ ﬂﬂ 16.2 MAXCUT
Harald Racke

Semidefinite Relaxation

1 t
max gzi,jwij(l—vivj)
Yi s =
Vi Vi € R"

» this is clearly a relaxation

> the solution will be vectors on the unit sphere

m 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

» Choose a random vector v such that v/||v || is uniformly
distributed on the unit sphere.

> Ifrfv; > 0sety; =1elseset y; = —1

jﬂ ﬂﬂ 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

Choose the i-th coordinate 7; as a Gaussian with mean 0 and
variance 1, i.e., ;i ~ N (0,1).

Density function:

P(x) = ﬁe"z/z
Then
Pr(v = (x1,...,xn)]
= (JZilrr)”eX%/z LeXE2 L L eXn2dxy ... - dxy,
= (\/TI'IT)TL e3CF X0 dxey . dxg
Hence the probability for a point only depends on its distance to
the origin.

Rounding the SDP-Solution

Fact

The projection of ¥ onto two unit vectors e; and e are
independent and are normally distributed with mean 0 and
variance 1 iff e; and e» are orthogonal.

Note that this is clear if e; and e» are standard basis vectors.

jﬂ ﬂﬂ 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

Corollary

If we project » onto a hyperplane its normalized projection
" /1l¥"]l) is uniformly distributed on the unit circle within the
hyperplane.

Rounding the SDP-Solution

» if the normalized projection falls into the shaded region, v;
and v; are rounded to different values

> this happens with probability 0/

m 16.2 MAXCUT
Harald Racke

jﬂ ﬂﬂ 16.2 MAXCUT
Harald Racke

Rounding the SDP-Solution

» contribution of edge (i, j) to the SDP-relaxation:

%wij(l - Uij)

> (expected) contribution of edge (i, j) to the rounded
instance w;; arccos(viv;)/m

> ratio is at most

2 arccos(x)

Rounding the SDP-Solution

1 T
— Larccos(x)
1
I 5(1 - Xx)
0.75
0.5
0.25
0
-1 -0.5 0 0.5 1

jﬂ ﬂﬂ 16.2 MAXCUT
Harald Racke

> 0.878
xe[-1,1] 1(1 —Xx)
‘m 16.2 MAXCUT
Harald Racke
Rounding the SDP-Solution
2
1.5+ =
1 / }
N
0.5 —
—— ratio(x)
—0.878
|
O—1 -0.5 0 0.5 1

m 16.2 MAXCUT
Harald Ricke

Rounding the SDP-Solution

Theorem 91
Given the unique games conjecture, there is no x-approximation
for the maximum cut problem with constant

2 arccos(x)

o> i
xe[-1,11 1(1 — x)

unless P = NP.

jﬂ ﬂﬂ 16.2 MAXCUT
Harald Ricke

Repetition: Primal Dual for Set Cover

Primal Relaxation:

min Z§=1 WiXi
s.t. VueU Siyes;xi =z 1
Vie{l,..., k} x;i = 0
Dual Formulation:
max 2uet Yu
s.t. Vie{l,...,k} Duues;yu = w;i
yu = 0

Repetition: Primal Dual for Set Cover

Algorithm:

» Start with » = 0 (feasible dual solution).
Start with x = 0 (integral primal solution that may be
infeasible).
» While x not feasible
> Identify an element e that is not covered in current primal
integral solution.
> Increase dual variable y, until a dual constraint becomes
tight (maybe increase by 0!).
> If this is the constraint for set S; set x; = 1 (add this set to
your solution).

m 17.1 Primal Dual Revisited
Harald Ricke

‘m 17.1 Primal Dual Revisited
Harald Ricke

Repetition: Primal Dual for Set Cover

Analysis:
> For every set §; with x; = 1 we have

D, Ve =wj

ecS;

» Hence our cost is

Dwixj=> > ve=2 lljre€ S}y
7

J EESJ' e

<f+ > ye<f-OPT

Note that the constructed pair of primal and dual solution fulfills
primal slackness conditions.

This means
Xj>0= > ye=w;

ecS;

If we would also fulfill dual slackness conditions

Ye>0= > xj=1

Je€s;

then the solution would be optimal!!!

m 17.1 Primal Dual Revisited
Harald Ricke

‘m 17.1 Primal Dual Revisited
Harald Ricke

We don’t fulfill these constraint but we fulfill an approximate
version:

Ye>0=1< > xj<f
Jiees;

This is sufficient to show that the solution is an f-approximation.

m 17.1 Primal Dual Revisited
Harald Ricke

Suppose we have a primal/dual pair

min > jciX; max 2ibiyi
s.t. Vi zj: aijxj = b; s.t. Vj Zi aijyi = Cj
Vv j Xj = 0 Vi yvi = 0

and solutions that fulfill approximate slackness conditions:

1C
et

\%

Xj >0= Zaijyi
i

IA

Yi > 0= Zai‘,’xj Bbi

J

‘m 17.1 Primal Dual Revisited
Harald Ricke

Then right hand side of j-th
dual constraint

S o (Sam)

J i

o3 (S
i J
< aB > biy
i

dual objective

m 17.1 Primal Dual Revisited
Harald Ricke

Feedback Vertex Set for Undirected Graphs

» Given a graph G = (V, E) and non-negative weights w, > 0
for vertex v € V.

» Choose a minimum cost subset of vertices s.t. every cycle
contains at least one vertex.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

We can encode this as an instance of Set Cover
> Each vertex can be viewed as a set that contains some cycles.

» However, this encoding gives a Set Cover instance of
non-polynomial size.

» The O(logn)-approximation for Set Cover does not help us
to get a good solution.

Let € denote the set of all cycles (where a cycle is identified by its
set of vertices)

Primal Relaxation:

m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Ricke

min >v WyXy
st. VCel€ S,cexy = 1
Yv Xy =
Dual Formulation:
max 2.ceC Y
st. YveV DcpecyYe < wy
vC yc = 0
‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

If we perform the previous dual technique for Set Cover we get
the following:

» Start with x =0and y =0
> While there is a cycle C that is not covered (does not contain
a chosen vertex).
> Increase yc¢ until dual constraint for some vertex v becomes
tight.
> set xy = 1.

Then
Zwvxv :z Z YcXv
v vV CwveC
= Z Z Yc
veSCveC
=2.18SnCl->c
C

where S is the set of vertices we choose.

If every cycle is short we get a good approximation ratio, but this
is unrealistic.

m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Algorithm 1 FeedbackVertexSet

1.y <0

2. x <0

3: while exists cycle C in G do

4: increase yc until there is v € C s.t. X.c.pec Ve = Wy
5: xyp =1

6: remove v from G

7: repeatedly remove vertices of degree 1 from G

m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Ricke

Idea:
Always choose a short cycle that is not covered. If we always find
a cycle of length at most & we get an x-approximation.

Observation:
For any path P of vertices of degree 2 in G the algorithm chooses
at most one vertex from P.

‘m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Ricke

Observation:
If we always choose a cycle for which the number of vertices of
degree at least 3 is at most « we get a 2x-approximation.

Theorem 92

In any graph with no vertices of degree 1, there always exists a
cycle that has at most O (logn) vertices of degree 3 or more. We
can find such a cycle in linear time.

This means we have

Yec>0=>1S5nC|<0O(ogn) .

m 17.2 Feedback Vertex Set for Undirected Graphs
Harald Racke

Primal Dual for Shortest Path

Given a graph G = (V, E) with two nodes s,t € V and
edge-weights ¢ : E — R™ find a shortest path between s and t
w.r.t. edge-weights c.

min Decle)xe
st. VSE€S DossyXe = 1
Ve € E xe € {0,1}

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS§ t¢S}.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

Primal Dual for Shortest Path

The Dual:
max 2.8 Ys
st. Ve€E Dgoecss)Ys =< cle)
vses ys = 0

Here 6(S) denotes the set of edges with exactly one end-point in
S,and S={ScV:seS,t¢S}.

m 17.3 Primal Dual for Shortest Path
Harald Ricke

Primal Dual for Shortest Path

We can interpret the value ys as the width of a moat surounding
the set S.

Each set can have its own moat but all moats must be disjoint.

An edge cannot be shorter than all the moats that it has to cross.

‘m 17.3 Primal Dual for Shortest Path
Harald Ricke

Algorithm 1 PrimalDualShortestPath

vy <0

F-o

while there is no s-t path in (V,F) do
Let C be the connected component of (V,F) con-
taining s

5: Increase y¢ until there is an edge ¢’ € 6(C) such

that >s.eres(5) Vs = c(e’).

2 F—~Ful{e'}

: Let P be an s-t path in (V,F)

return P

A oW N =

© N O

m 17.3 Primal Dual for Shortest Path
Harald Racke

Lemma 93
At each point in time the set F forms a tree.

Proof:

> |In each iteration we take the current connected component
from (V, F) that contains s (call this component C) and add
some edge from 6(C) to F.

» Since, at most one end-point of the new edge is in C the
edge cannot close a cycle.

‘m 17.3 Primal Dual for Shortest Path
Harald Racke

D=2 > s

ecP ecP S:ee6(S)

= > IPnsS|-ys .
S:se8,t¢S

If we can show that ys > 0 implies |[P n 6(S)| = 1 gives

> ce) => ys < OPT
s

ecP

by weak duality.

Hence, we find a shortest path.

If 5(S) contains two edges from P then there must exist a
subpath P’ of P that starts and ends with a vertex from S (and all
interior vertices are not in S).

When we increased yg, S was a connected component of the set
of edges F’ that we had chosen till this point.

F" U P’ contains a cycle. Hence, also the final set of edges
contains a cycle.

This is a contradiction.

m 17.3 Primal Dual for Shortest Path
Harald Ricke

‘m 17.3 Primal Dual for Shortest Path
Harald Ricke

Steiner Forest Problem:

Given a graph G = (V, E), together with source-target pairs s;, t;,
i=1,...,k,and a cost function ¢ : E — R" on the edges. Find a
subset F < E of the edges such that for every i € {1,...,k} there
is a path between s; and t; only using edges in F.

min 2ecle)x,
s.t. VScV:SeSiforsomei D,csi)Xe = 1
Ve € E xe € {0,1}

Here S; contains all sets S such thats; € Sand t; ¢ S.

max 2s:3istSe $; VS
s.t. VeecE ZS:ee:S(S) ys =< cle)
ys = 0

The difference to the dual of the shortest path problem is that we
have many more variables (sets for which we can generate a moat
of non-zero width).

m 17.4 Steiner Forest
Harald Racke

m 17.4 Steiner Forest
Harald Racke

Algorithm 1 FirstTry
1y <0
2. F—g
3: while not all s;-t; pairs connected in F do
4: Let C be some connected component of (V, F) such
that [C N {s;,t;}| = 1 for some 1.
5: Increase yc¢ until there is an edge ¢’ € §(C) s.t.
ZSeSi:e’eé(S) s = Ce
6: F —Fu{e'}
7: return | J; P;

m 17.4 Steiner Forest
Harald Ricke

deley=> > ys=>16(S)NF|-ys .

ecF ecF S:ecH(S) S

If we show that ys > 0 implies that [6(S) N F| < o« we are in good
shape.

However, this is not true:

» Take a complete graph on k + 1 vertices vg, vy,..., Uk.
The i-th pair is vo-v;.
The first component C could be {vg}.
We only set yy,; = 1. All other dual variables stay 0.
The final set F contains all edges {vo,v;},i=1,...,k.
Yive} > 0 but [6({vo}) NF| = k.

vV vV.v v VY

m 17.4 Steiner Forest
Harald Ricke

Algorithm 1 SecondTry

Yy <0, F—a;4 -0

: while not all s;-t; pairs connected in F do

£—4+1

Let € be set of all connected components C of (V,F)
such that |C n {s;,t;}| = 1 for some 1.

Increase y¢ for all C € € uniformly until for some edge
ep € 6(C"), C"' € Cs.t. Xsepe5(5) Vs = Cey

6: F—Fu {eg}

7. F' « F

8: for k — £ downto 1 do // reverse deletion
9

0

1

> BN I

(%}

if I’ — ey is feasible solution then
remove ey from F’
. return F’

m 17.4 Steiner Forest
Harald Racke

The reverse deletion step is not strictly necessary this way. It
would also be sufficient to simply delete all unnecessary edges in
any order.

m 17.4 Steiner Forest
Harald Racke

Example

m 17.4 Steiner Forest
Harald Ricke

Lemma 94
For any C in any iteration of the algorithm

> 18(C) nF'| < 2|¢]
ceC

This means that the number of times a moat from € is crossed in
the final solution is at most twice the number of moats.

Proof: later...

‘m 17.4 Steiner Forest
Harald Ricke

Dce=> > ys=>IFnsS)-ys .
S

ecF’ ecF’ S:e€d(S)

We want to show that

SIF s8] -ys<2> ys
S S

> In the i-th iteration the increase of the left-hand side is

€ > [Fns(0)
ceC
and the increase of the right hand side is 2¢|C].

> Hence, by the previous lemma the inequality holds after the
iteration if it holds in the beginning of the iteration.

m 17.4 Steiner Forest
Harald Ricke

Lemma 95
For any set of connected components C in any iteration of the
algorithm
> IS(C)nF'| < 2|C]
ceC
Proof:

> At any point during the algorithm the set of edges forms a
forest (why?).

> Fix iteration i. Let F; be the set of edges in F at the
beginning of the iteration.

> Let H = F' — Fi.

» All edges in H are necessary for the solution.

m 17.4 Steiner Forest
Harald Ricke

> Contract all edges in F; into single vertices V'.
> We can consider the forest H on the set of vertices V'.
> Let deg(v) be the degree of a vertex v € V' within this forest.

> Color a vertex v € V' red if it corresponds to a component from €
(an active component). Otw. color it blue. (Let B the set of blue
vertices (with non-zero degree) and R the set of red vertices)

> We have

?
> deg(v) = > |6(C) nF'| <2|C| = 2|R|

VER ceC

m 17.4 Steiner Forest
Harald Ricke

> Suppose that no node in B has degree one.
» Then

> deg(v) = > deg(v) - > deg(v)

veER veERUB veB

2(IR| + |Bl) — 2|B| = 2|R|

IA

> Every blue vertex with non-zero degree must have degree at
least two.

> Suppose not. The single edge connecting b € B comes from
H, and, hence, is necessary.

> But this means that the cluster corresponding to b must
separate a source-target pair.

> But then it must be a red node.

‘m 17.4 Steiner Forest
Harald Ricke

18 Cuts & Metrics
Shortest Path

min Decle)xe
st. VSeES DoesisXe = 1
Ve € E xe € {0,1}
S is the set of subsets that separate s from ¢.
The Dual:
max 2.5 s
st. Ve€E Dgoecsis)Ys =< cle)
vSes ys = 0

The Separation Problem for the Shortest Path LP is the Minimum
Cut Problem.

m 18 Cuts & Metrics
Harald Racke

18 Cuts & Metrics

Minimum Cut

min Decle)xe
st. VPe?P DecpXe = 1
Ve e E x. € {0,1}

P is the set of path that connect s and t.

The Dual:
max 2P VP
st. Ve€E Dp,cpyp =< cle)
VP e P yp = 0

The Separation Problem for the Minimum Cut LP is the Shortest
Path Problem.

m 18 Cuts & Metrics
Harald Racke

18 Cuts & Metrics

Observations:

Suppose that £,-values are solution to Minimum Cut LP.
> We can view ¥, as defining the length of an edge.

> Define d(u, V) = miNpath P btw. u and v 2.ecp Le as the Shortest
Path Metric induced by £,.

» We have d(u,v) = ¥, for every edge e = (u,v), as otw. we

could reduce ¥, without affecting the distance between s and
t.

Remark for bean-counters:

d is not a metric on V but a semimetric as two nodes 1 and v
could have distance zero.

m 18 Cuts & Metrics
Harald Ricke

How do we round the LP?

> Let B(s,7) be the ball of radius » around s (w.r.t. metric d).
Formally:

B={veV|d(s,v)<r}

» For0 <7 <1, B(s,r) is an s-t-cut.

Which value of » should we choose? choose randomly!!!

Formally:
choose ¥ u.a.r. (uniformly at random) from interval [0, 1)

‘m 18 Cuts & Metrics
Harald Ricke

What is the probability that an edge (u, v) is in the cut?

2/
<

> asssume wlog. d(s,u) < d(s,v)

d(s,v) —d(s,u)

Prle is cut] = Pr(r € [d(s,u),d(s,v))] < 120

<4,

m 18 Cuts & Metrics
Harald Racke

What is the expected size of a cut?

E[size of cut] = E[> c(e)Pr[e is cut]]
<., cele

On the other hand:

ze c(e)¥, < size of mincut

as the £, are the solution to the Mincut LP relaxation.

Hence, our rounding gives an optimal solution.

m 18 Cuts & Metrics
Harald Racke

Minimum Multicut:

Given a graph G = (V,E), together with source-target pairs s;, t;,
i=1,...,k, and a capacity function c : E — R" on the edges. Find
a subset F < E of the edges such that all s;-t; pairs lie in different
components in G = (V,E \ F).

min >eoc(e)le
s.t. VPeP;forsomei D,cple = 1
VeeE . € {0,1}

Here P; contains all path P between s; and t;.

m 18 Cuts & Metrics
Harald Ricke

Re-using the analysis for the single-commodity case is
difficult.

Pr[e is cut] <?

> If for some R the balls B(s;,R) are disjoint between different
sources, we get a 1/R approximation.

» However, this cannot be guaranteed.

m 18 Cuts & Metrics
Harald Ricke

> Assume for simplicity that all edge-length £, are multiples of
o< 1.

> Replace the graph G by a graph G’, where an edge of length
Y, is replaced by £,/6 edges of length 6.

> Let B(s;,z) be the ball in G’ that contains nodes v with
distance d(s;,v) < z6.

Algorithm 1 RegionGrowing(s;, p)
1:. z<0
2: repeat
3 flip a coin (Pr[heads] = p)
4: z—z+1
5
6

: until heads
: return B(s;, z)

m 18 Cuts & Metrics
Harald Racke

Algorithm 1 Multicut(G")

1: while 3s;-t; pair in G' do

2 C — RegionGrowing(si, p)

3: G’ = G’ \ C // cuts edges leaving C
4: return B(s;,z)

» probability of cutting an edge is only p

> a source either does not reach an edge during Region
Growing; then it is not cut

> if it reaches the edge then it either cuts the edge or protects
the edge from being cut by other sources

> if we choose p = ¢ the probability of cutting an edge is only
its LP-value; our expected cost are at most OPT.

m 18 Cuts & Metrics
Harald Racke

Problem:
We may not cut all source-target pairs.

A component that we remove may contain an s;-t; pair.

If we ensure that we cut before reaching radius 1/2 we are in
good shape.

» choose p =6Ink -6
> we make % trials before reaching radius 1/2.

> we say a Region Growing is not successful if it does not
terminate before reaching radius 1/2.

I

2

Pr[not successful] < (1-p)2s = ((1—;9)””) <e %

|~
o

il

» Hence,
1
Pr[3i that is not successful] < w2

<

1
k3

m 18 Cuts & Metrics
Harald Ricke

‘m 18 Cuts & Metrics
Harald Ricke

What is expected cost?

E[cutsize] = Pr[success] - E[cutsize | success]

+ Pr[no success] - E[cutsize | no success]

E[cutsize] — Pr[no succ.] - E[cutsize | no succ.]

E[cutsize | succ.] = Prlsuccess]

- E[cutsize] - 1 6lnk - OPT < 8Ink - OPT
Pr[success] =~ 1 —

1
%

Note: success means all source-target pairs separated

We assume k > 2.

If we are not successful we simply perform a trivial
k-approximation.

This only increases the expected cost by at most
= - kOPT < OPT/k.

Hence, our final cost is O(Ink) - OPT in expectation.

m 18 Cuts & Metrics
Harald Racke

m 18 Cuts & Metrics
Harald Racke

Traveling Salesman

Given a set of cities ({1,...,n}) and a symmetric matrix C = (c;;),
¢ij = 0 that specifies for every pair (i, j) € [n] x [n] the cost for
travelling from city i to city j. Find a permutation 1t of the cities
such that the round-trip cost

n—-1

Crr(D)m(n) + Z Crr(i)m(i+1)
i=1

is minimized.

m 19 Hardness of Approximation
Harald Ricke

Traveling Salesman

Theorem 96
There does not exist an O (2™)-approximation algorithm for TSP.

Hamiltonian Cycle:
For a given undirected graph G = (V, E) decide whether there
exists a simple cycle that contains all nodes in G.

» Given an instance to HAMPATH we create an instance for TSP.

> If (i,j) ¢ E then set ¢;; to n2" otw. set ¢;j to 1. This
instance has polynomial size.

> There exists a Hamiltonian Path iff there exists a tour with
cost n. Otw. any tour has cost strictly larger than n2".

> An O(2")-approximation algorithm could decide btw. these
cases. Hence, cannot exist unless P = NP.

m 19 Hardness of Approximation
Harald Ricke

Gap Introducing Reduction

HAM TSP
Reduction from Hamiltonian cycle to TSP

» instance that has Hamiltonian cycle is mapped to TSP
instance with small cost

> otherwise it is mapped to instance with large cost

» — there is no 2" /n-approximation for TSP

PCP theorem: Approximation View

Theorem 97 (PCP Theorem A)

There exists € > 0 for which there is gap introducing reduction
between 3SAT and MAX3SAT.

'The standard formula- “
:tion of the PCP theo-

1 rem looks very differ-
| ent but the above theo-
:rem is equivalent. Orig-
i inally, the PCP theorem

| is a result about interac- 3SAT MAX3SAT

:tive proof systems and | = m m o e e e oo \
| its importance to hard- 1 Here the goal of the MAX3SAT-problem is to.
| ness of approximation , | maximize the fraction of satisfied clauses. The]
1is somewhat a side ef-! I above theorem implies that we cannot approxi—:

: fect. 1 : mate MAX3SAT with a ratio better than1 — €. |

__

PCP theorem: Proof System View

Definition 98 (NP)
A language L € NP if there exists a polynomial time, deterministic
verifier V (a Turing machine), s.t.

[x € L] completeness
There exists a proof string v, |y| = poly(|x]),
s.t. V(x,y) = “accept”.

[x ¢ L] soundness
For any proof string y, V(x,y) = “reject”.

Note that requiring |y | = poly(|x|) for x ¢ L does not make a
difference (why?).

Probabilistic Checkable Proofs

An Oracle Turing Machine M is a Turing machine that has access
to an oracle.

Such an oracle allows M to solve some problem in a single step.

For example having access to a TSP-oracle 1r7sp would allow M to
write a TSP-instance x on a special oracle tape and obtain the
answer (yes or no) in a single step.

For such TMs one looks in addition to running time also at query
complexity, i.e., how often the machine queries the oracle.

For a proof string y, 1T, is an oracle that upon given an index i
returns the i-th character y; of y.

m 19 Hardness of Approximation
Harald Ricke

‘m 19 Hardness of Approximation
Harald Ricke

|Non adaptive means that e.g. the sec- h

Probabilistic Checkable Proofs ! .4 proof-bit read by the verifier may!

: not depend on the value of the first bit. 1

Definition 99 (PCP)
A language L € PCP; () s(n) (¥ (1), q(n)) if there exists a
polynomial time, non-adaptive, randomized verifier V, s.t.

[x € L] There exists a proof string y, s.t. V™ (x) =
“accept” with probability > c(n).

[x ¢ L] For any proof string v, V™™ (x) = “accept” with
probability < s(n).

The verifier uses at most @ (v (7)) random bits and makes at most
O(q(n)) oracle queries.

__

I Note that the proof itself does not count towards the input of the verifier. The verifier has to write !
| the number of a bit- position it wants to read onto a special tape, and then the corresponding ,
' bit from the proof is returned to the verifier. The proof may only be exponentially long, as a:
1 polynomlal time verifier cannot address longer proofs.

Probabilistic Checkable Proofs

c(n) is called the completeness. If not specified otw. c(n) = 1.
Probability of accepting a correct proof.

s(n) < c(n) is called the soundness. If not specified otw.
s(n) = 1/2. Probability of accepting a wrong proof.

r(n) is called the randomness complexity, i.e., how many random
bits the (randomized) verifier uses.

q(n) is the query complexity of the verifier.

m 19 Hardness of Approximation
Harald Racke

'RP = cORP = P is a commonly believed !
e o i
PrObabIIIStlc Checkable PI’OOfS :conjecture. RP stands for randomized:
1 polynomial time (with a non-zero prob-|
!"ability of rejecting a YES-instance).
» P =PCP(0,0) '

verifier without randomness and proof access is deterministic

algorithm

» PCP(logn,0) <P
we can simulate O (logn) random bits in deterministic,
polynomial time

» PCP(0,logn) <P
we can simulate short proofs in polynomial time

» PCP(poly(n),0) = coRP Zp
by definition; coRP is randomized polytime with one sided
error (positive probability of accepting NO-instance)

Note that the first three statements also hold with equality

m 19 Hardness of Approximation
Harald Ricke

Probabilistic Checkable Proofs

» PCP(0,poly(n)) = NP

by definition; NP-verifier does not use randomness and asks

polynomially many queries
» PCP(logn,poly(n)) = NP
NP-verifier can simulate O (logn) random bits
2!
» PCP(poly(n),0) = coRP < NP

» NP < PCP(logn,1)
hard part of the PCP-theorem

‘m 19 Hardness of Approximation
Harald Ricke

PCP theorem: Proof System View

Theorem 100 (PCP Theorem B)
NP = PCP(logn, 1)

m 19 Hardness of Approximation
Harald Ricke

Probabilistic Proof for Graph Nonlsomorphism

GNI is the language of pairs of non-isomorphic graphs
Verifier gets input (Go, G1) (two graphs with n-nodes)

It expects a proof of the following form:

» For any labeled n-node graph H the H’s bit P[H] of the
proof fulfills

G()EH - P[H]:O

Gi=H = P[H]=1
Go,G1 # H = P[H] = arbitrary

m 19 Hardness of Approximation
Harald Ricke

Probabilistic Proof for Graph Nonlsomorphism

Verifier:
» choose b € {0,1} at random

> take graph Gj, and apply a random permutation to obtain a
labeled graph H

» check whether P[H] =D

If Go # G1 then by using the obvious proof the verifier will always
accept.

If Go = G1 a proof only accepts with probability 1/2.
> suppose 1T(Go) = G

> if we accept for b = 1 and permutation 7rang We reject for
b = 0 and permutation TTyang o T

Version B = Version A

> For 3SAT there exists a verifier that uses clogn random bits,
reads g = O(1) bits from the proof, has completeness 1 and
soundness 1/2.

» fix x and 7:

input proof bits
X, Ty e -5 Ty

l

computation

i’ fX,T(-’ley---v-’qu)
b
reject accept

m 19 Hardness of Approximation
Harald Ricke

‘m 19 Hardness of Approximation
Harald Ricke

Version B = Version A

> transform Boolean formula fy, into 3SAT formula Cx
(constant size, variables are proof bits)

> consider 3SAT formula Cx = A\, Cx»

[x € L] There exists proof string v, s.t. all formulas Cx
evaluate to 1. Hence, all clauses in Cy satisfied.

[x ¢ L] For any proof string v, at most 50% of formulas
Cx, evaluate to 1. Since each contains only a
constant number of clauses, a constant fraction
of clauses in Cy are not satisfied.

> this means we have gap introducing reduction

m 19 Hardness of Approximation
Harald Racke

Version A = Version B

We show: Version A = NP < PCP;,1_(logn, 1).
given L € NP we build a PCP-verifier for L

Verifier:

> 3SAT is NP-complete; map instance x for L into 3SAT
instance I, s.t. I satisfiable iff x € L

map I, to MAX3SAT instance Cy (PCP Thm. Version A)
interpret proof as assignment to variables in Cy
choose random clause X from Cy

query variable assignment o for X;

vV vV.v. v Y

accept if X (o) = true otw. reject

Version A = Version B

[x € L] There exists proof string y, s.t. all clauses in Cy
evaluate to 1. In this case the verifier returns 1.

[x ¢ L1 For any proof string v, at most a (1 — €)-fraction
of clauses in Cy evaluate to 1. The verifier will
reject with probability at least €.

To show Theorem B we only need to run this verifier a constant
number of times to push rejection probability above 1/2.

1 Note that this approach has strong con-
1 . .
| nections to error correction codes.

NP < PCP(poly(n), 1)

PCP(poly(n), 1) means we have a potentially exponentially long
proof but we only read a constant number of bits from it.

The idea is to encode an NP-witness (e.g. a satisfying assignment
(say n bits)) by a code whose code-words have 2" bits.

A wrong proof is either
> a code-word whose pre-image does not correspond to a
satisfying assignment

> or, a sequence of bits that does not correspond to a
code-word

We can detect both cases by querying a few positions.

19 Hardness of Approximation

m Harald Racke

19 Hardness of Approximation

‘_I—I_Hm Harald Racke

The Code

u € {0, 1}" (satisfying assignment)

Walsh-Hadamard Code:
WH,, : {0,1}" — {0,1}, x — xTu (over GE(2))

The code-word for u is WH,,. We identify this function by a
bit-vector of length 2",

The Code

Lemma 101
If u + u' then WHy, and WH,, differ in at least 2! bits.

Proof:
Suppose that u — u’ = 0. Then

WH,, (x) # WHy (x) <= (u—u)Tx #0

This holds for 2"~1 different vectors x.

19 Hardness of Approximation

m Harald Racke

19 Hardness of Approximation

lm Harald Racke

The Code

Suppose we are given access to a function f: {0,1}" — {0,1} and
want to check whether it is a codeword.

Since the set of codewords is the set of all linear functions {0,1}"
to {0, 1} we can check

fix+y)=f(x)+ f(»)

for all 22" pairs x, v. But that’s not very efficient.

m 19 Hardness of Approximation
Harald Ricke

NP < PCP(poly(n), 1)

Can we just check a constant number of positions?

‘m 19 Hardness of Approximation
Harald Ricke

o - - - ____-_-__------_-
1 Observe that for two codewords :

NP < PCP(poly(n), 1)

Definition 102
Let p € [0,1]. We say that f,g: {0,1}" — {0,1} are p-close if

Xe{lz)fl}n[f(x) =g(x)]=p .

Theorem 103 (proof deferred)
Let f:{0,1}" — {0,1} with

Pr[f)+fO)=fx+]=zp>

x,y€{0,1}"

N~

Then there is a linear function f such that f and f are p-close.

m 19 Hardness of Approximation
Harald Ricke

NP < PCP(poly(n), 1)

We need @ (1/6) trials to be sure that f is (1 — §)-close to a linear
function with (arbitrary) constant probability.

m 19 Hardness of Approximation
Harald Ricke

NP < PCP(poly(n), 1)

Suppose for § < 1/4 f is (1 — §)-close to some linear function f.

£ is uniquely defined by f, since linear functions differ on at least
half their inputs.

Suppose we are given x € {0,1}" and access to f. Can we
compute f(x) using only constant number of queries?

m 19 Hardness of Approximation
Harald Ricke

NP < PCP(poly(n), 1)

Suppose we are given x € {0,1}" and access to f. Can we
compute f(x) using only constant number of queries?

1. Choose x" € {0,1}™ u.a.r.

2. Setx" ==x+x'.

3. Let v’ = f(x') and v = f(x"").
4. Output y' + y".

x" and x’" are uniformly distributed (albeit dependent). With
probability at least 1 — 26 we have f(x’) = f(x’) and
f(xll) =f(X”).

Then the above routine returns f(x).

This technique is known as local decoding of the Walsh-Hadamard
code.

NP < PCP(poly(n), 1)

We show that QUADEQ € PCP(poly(n),1). The theorem follows
since any PCP-class is closed under polynomial time reductions.

QUADEQ
Given a system of quadratic equations over GF(2). Is there a
solution?

m 19 Hardness of Approximation
Harald Racke

QUADEQ is NP-complete

» given 3SAT instance C represent it as Boolean circuit
eg.C=(x1VXx2VX3)A(X3VXeVX5)AI(X6VX7VX8)

> add variable for every wire

» add constraint for every gate
OR: ij+ix+ij-i2=0 Q
AND: i1 -i> =0 d-
NEG: i=1-0

» add constraint out = 1

> system is feasible iff
C is satisfiable

X1 X2 X3 X4 X5 X6 X7 X8

m 19 Hardness of Approximation
Harald Racke

1
| Note that over GF(2) x = x2. Therefore,

1we can assume that there are no terms :
1
, of degree 1. |

NP < PCP(poly(n), 1)

We encode an instance of QUADEQ by a matrix A that has n?
columns; one for every pair i, j; and a right hand side vector b.

For an n-dimensional vector x we use x ® x to denote the
n?-dimensional vector whose i, j-th entry is XiXj.

Then we are asked whether
Alx®x)=D>b

has a solution.

NP < PCP(poly(n), 1)

Let A, b be an instance of QUADEQ. Let u be a satisfying
assignment.

The correct PCP-proof will be the Walsh-Hadamard encodings of u
and u ® u. The verifier will accept such a proof with probability 1.

We have to make sure that we reject proofs that do not
correspond to codewords for vectors of the form u, and u ® u.

We also have to reject proofs that correspond to codewords for
vectors of the form z, and z ® z, where z is not a satisfying
assignment.

m 19 Hardness of Approximation
Harald Ricke

: Recall that for a correct proof there is no :

1 difference between f and f. 1
L e e e e e e e e e e e e e e e e e e — -

NP < PCP(poly(n), 1)

Step 1. Linearity Test.
The proof contains 2™ + 2"° bits. This is intgrpreted as a pair of
functions f:{0,1}" - {0,1} and g : {0,1}"Z - {0, 1}.

We do a 0.999-linearity test for both functions (requires a
constant number of queries).

We also assume that for the remaining constant number of
accesses WH-decoding succeeds and we recover f(x).

Hence, our proof will only ever see f To simplify notation we use
f for f, in the following (similar for g, g).

NP < PCP(poly(n), 1)

:We need to show that the probability of accepting a wrong proof is small. 1
1 This first step means that in order to fool us with reasonable probability a wrong proof needs :
: to be very close to a linear function. The probability that we accept a proof when the functions :
"are not close to linear is just a small constant. 1
| Similarly, if the functions are close to linear then the probability that the Walsh Hadamard
| decoding fails (for any of the remaining accesses) is just a small constant. If we ignore this:
: small constant error then a malicious prover could also provide a linear function (as a near,
i linear function f is “rounded” by us to the corresponding linear function f). If this rounding is |
: successful it doesn’t make sense for the prover to provide a function that is not linear. !

m 19 Hardness of Approximation
Harald Racke

NP < PCP(poly(n), 1)

Step 2. Verify that g encodes u ® u where u is string encoded
by f.

fr)=uTr and g(z) = w’z since f, g are linear.
» choose 7,7’ independently, u.a.r. from {0,1}"
> if f(r)f(r') =g er’) reject

> repeat 3 times

m 19 Hardness of Approximation
Harald Ricke

NP < PCP(poly(n), 1)

fo) - fa)y =ulr-ulr’
(Swri) - (Xujr)
i J

=> WiUjTiT]
ij
=rTuy’

where U is matrix with U;; = u; - u;

‘m 19 Hardness of Approximation
Harald Ricke

NP < PCP(poly(n), 1)

Let W be n x n-matrix with entries from w. Let U be matrix with
Uij = u; - uj (entries from u ® u).

grer)=wlrer) = wjrr,=r'wr
ij

FOOF@) =ulr -ulv’ =+Tur’

If U = W then W' = Ur’ with probability at least 1/2. Then
rTwr’ = vTUr’ with probability at least 1/4.

: For a non-zero vector x and a random vector * (both with elements from :
: GF(2)), we have Pr[xTr = 0] = % This holds because the product is zero if'f:
1 the number of ones in ¥ that “hit” ones in x in the product is even. |

NP < PCP(poly(n), 1)

Step 3. Verify that f encodes satisfying assignment.

We need to check
Ar(ue®u) = by

where Ay is the k-th row of the constraint matrix. But the left
hand side is just g(A}).

We can handle this by a single query but checking all constraints
would take @ (m) steps.

We compute T A, where » € {0,1}™. If u is not a satisfying
assignment then with probability 1/2 the vector » will hit an odd
number of violated constraints.

In this case ¥TA(u ® u) # vI'b. The left hand side is equal to
g(ATr),

NP < PCP(poly(n), 1)

We used the following theorem for the linearity test:

Theorem 103
Let f:{0,1}" — {0,1} with

Pr[fO0)+f) =flx+)]=p>

x,y€{0,1}"

N —

Then there is a linear function f such that f andf are p-close.

NP < PCP(poly(n), 1)

Fourier Transform over GF(2)

In the following we use {—1,1} instead of {0,1}. We map
b e {0,1} to (-1)P.

This turns summation into multiplication.

The set of function f: {—1,1}" — R form a 2"-dimensional
Hilbert space.

m 19 Hardness of Approximation
Harald Ricke

‘m 19 Hardness of Approximation
Harald Ricke

NP < PCP(poly(n), 1)

Hilbert space

>

>

| 4

addition (f +g)(x) = f(x) + g(x)
scalar multiplication (xf)(x) = «f(x)

inner product (f,g) = Exci-1,13n[f(x)g(x)]
(bilinear, (f,f) = 0,and (f,f)=0= f =0)

completeness: any sequence xj of vectors for which

N

L—ZXk

k=1

ST lxill < oo fulfills =0
k=1

for some vector L.

NP < PCP(poly(n), 1)

standard basis

1 x=vy
eX(y):{O otw

Then, f(x) = >; xjei(x) where &y = f(x), this means the
functions e; form a basis. This basis is orthonormal.

m 19 Hardness of Approximation
Harald Ricke

m 19 Hardness of Approximation
Harald Ricke

NP < PCP(poly(n), 1)

fourier basis

For ox = [n] define

Xa(x) =[] xi
iex
Note that
1 =
(Xo(,XB) = EX[XO((X)XB(X)] = Ex[XO(AB(X)] = { 0 g(tW_B

This means the x«’s also define an orthonormal basis. (since we
have 2" orthonormal vectors...)

m 19 Hardness of Approximation
Harald Ricke

NP < PCP(poly(n), 1)

A function x, multiplies a set of x;’s. Back in the GF(2)-world this
means summing a set of z;’s where x; = (—1)%i.

This means the function x correspond to linear functions in the
GF(2) world.

‘m 19 Hardness of Approximation
Harald Ricke

NP < PCP(poly(n), 1)

We can write any function f: {-1,1}" — R as

f= zfotch
(6.4
We call fa the " Fourier coefficient.

Lemma 104

1. (f,9) = 2« fadu
2. <faf) = Z(xfg(

Note that for Boolean functions f: {—1,1}" — {—1,1}, (f, f) = 1.

m 19 Hardness of Approximation
Harald Ricke

Linearity Test

in GF(2):
We want to show that if Pry o [f(x) + f(y) = f(x +)] is large
than f has a large agreement with a linear function.

in Hilbert space: (we will prove)
Suppose f: {+1}" — {—1, 1} fulfills

fi[f(x)f(y):f(xoy)]zéw _

Then there is some x < [n], s.t. f,x > 2€.

| m m mm e e e e e e e e o=
1 Here x o y denotes the n-dimensional vector with entry |

1 Xy; in position i (Hadamard product). 1
i Observe that we have xx(x o ¥) = Xa (X)X (V). |

m 19 Hardness of Approximation
Harald Ricke

Linearity Test

For Boolean functions (f, g) is the fraction of inputs on which
f, g agree minus the fraction of inputs on which they disagree.

2€ < fa = (f,X«) = agree — disagree = 2agree — 1

This gives that the agreement between f and x is at least % + €.

Linearity Test

N\»—l

;g[f(xoy) S f)] =

means that the fraction of inputs x,y on which f(x o y) and
f(x)f(y) agree is at least 1/2 + €.

This gives

Exy[f(xoy)f(x)f(y)] =agreement — disagreement
= 2agreement — 1

> 2€

m 19 Hardness of Approximation
Harald Ricke

‘m 19 Hardness of Approximation
Harald Ricke

2¢ < Exy| f(xo y)f(x)f(y)]

= Ex, _<Zafaxa(x 0y)> : (ZBfBXB(X)> -(nyww(_’)’))]

=Exy ZO(,B,Y fafﬁfyXo((X)Xo((y)XB(X)Xy(y)]

= za’[;’yf‘afﬁfy . Ex[Xo((X)XB(X)] E, [Xo((_’y)xy(y)]
=2 fa
e 7%= ma

m 19 Hardness of Approximation
Harald Racke

Label Cover

Input:
» bipartite graph G = (V1, V>, E)
> label sets L1, >

> for every edge (u,v) € E arelation Ry < L1 X Ly that
describe assignments that make the edge happy.

> maximize number of happy edges

= {m,m,0,m}

e = {(m,0), (m,0), (m,0)}

Ly = {e,0,0,0,0}
'The label cover problem also has its origin in proof systems. It encodes a 2PR1
|(2 prover 1 round system). Each side of the graph corresponds to a prover. An '
edge is a query consisting of a question for prover 1 and prover 2. If the answers |
I are consistent the verifer accepts otw. it rejects. 1

Label Cover MAX E3SAT via Label Cover

instance:
P(x)=(x1 VX2V X3)A(XqV X2V X3)A(X1V X2V Xyg)

:The verifier accepts if the Ia-:

corresponding graph: :belling (assignment to vari—:
1ables in clauses at the top,

1 . .
> an instance of label cover is (di,d»)-reqular if every vertex in [ivzavxs| [ravxavas| [Fivxs v F assignment to variables at|

. : the bottom) causes the clause ,
Ly has degree d; and every vertex in L> has degree do>. i to evaluate to true and is con-|

:sistent, i.e., the assignment:
:of e.g. x4 at the bottom is,

> if every vertex has the same degree d the instance is called

d-reqgular 1 the same as the assignment |
@ : given to x4 in the labelling of 1
ithe clause. | :
label sets: Ly = {T,F}3,L, = {T,F} (T=true, F=false)
relation: Rc x; = {((uj, uj, ur), ui)}, where the clause C is over
variables x;, x;, x; and assignment (u;, 1, 1) satisfies C
R ={((F,F,F),F),((F,T,F),F),((F,F,T),T),((F, T, T),T),
m 19 Hardness of Approximation ((Tl T! T)’T)y((Ta TyF)aF)y((TaF,F),F)}
Harald Racke
MAX E3SAT via Label Cover MAX E3SAT via Label Cover

Lemma 105

If we can satisfy k out of m clauses in ¢ we can make at least Lemma 106
3k +2(m — k) edges happy. If we can satisfy at most k clauses in ® we can make at most
3k +2(m — k) = 2m + k edges happy.
Proof:
» for Vo use the setting of the assignment that satisfies k Proof:
clauses > the labeling of nodes in V, gives an assignment
> for satisfied clauses in V| use the corresponding assignment > every unsatisfied clause in this assignment cannot be
to the clause-variables (gives 3k happy edges) assigned a label that satisfies all 3 incident edges
> for unsatisfied clauses flip assignment of one of the » hence at most 3m — (m — k) = 2m + k edges are happy

variables; this makes one incident edge unhappy (gives
2(m — k) happy edges)

m 19 Hardness of Approximation m 19 Hardness of Approximation
Harald Ricke Harald Ricke

 Here ¢ > 0 is the constant from PCP The-

Hardness for Label Cover 'orem A. !

We cannot distinguish between the following two cases
> all 3m edges can be made happy

» at most 2m + (1 — €)m = (3 — €)m out of the 3m edges can
be made happy

3—¢

Hence, we cannot obtain an approximation constant o« > “5-.

m 19 Hardness of Approximation
Harald Ricke

(3, 5)-regular instances

Theorem 107

There is a constant p s.t. MAXE3SAT is hard to approximate with
a factor of p even if restricted to instances where a variable
appears in exactly 5 clauses.

Then our reduction has the following properties:
> the resulting Label Cover instance is (3,5)-regular
> it is hard to approximate for a constant ¢ < 1

> given a label 1 for x there is at most one label £> for vy that
makes edge (x,y) happy (uniqueness property)

‘m 19 Hardness of Approximation
Harald Ricke

(3, 5)-regular instances

The previous theorem can be obtained with a series of
gap-preserving reductions:

> MAX3SAT < MAX3SAT(< 29)

> MAX3SAT(< 29) < MAX3SAT(=<5)
> MAX3SAT(< 5) < MAX3SAT(=5)
> MAX3SAT(=5) < MAXE3SAT(=5)

Here MAX3SAT (< 29) is the variant of MAX3SAT in which a
variable appears in at most 29 clauses. Similar for the other
problems.

m 19 Hardness of Approximation
Harald Racke

IWe take the (3, 5)-regular instance. We make 3 copies of
every clause vertex and 5 copies of every variable vertex. '

'Then we add edges between clause vertex and variable |

! vertex iff the clause contains the variable. This increases |

| the size by a constant factor. The gap instance can still '

i either only satisfy a constant fraction of the edges or all .

|edges The uniqueness property still holds for the new!
| instance.

Theorem 108 ~ t-=-----------mm oo
There is a constant x < 1 such if there is an x-approximation

algorithm for Label Cover on 15-regular instances than P=NP.

Regular instances

Given a label £; for x € V| there is at most one label £» for y that
makes (x,y) happy. (uniqueness property)

m 19 Hardness of Approximation
Harald Racke

Parallel Repetition

We would like to increase the inapproximability for Label Cover.

In the verifier view, in order to decrease the acceptance
probability of a wrong proof (or as here: a pair of wrong proofs)
one could repeat the verification several times.

Unfortunately, we have a 2P1R-system, i.e., we are stuck with a
single round and cannot simply repeat.

The idea is to use parallel repetition, i.e., we simply play several
rounds in parallel and hope that the acceptance probability of
wrong proofs goes down.

m 19 Hardness of Approximation
Harald Ricke

Parallel Repetition

Given Label Cover instance I with G = (V1,V>,E), label sets L;
and L» we construct a new instance I:

> Vi =VE=Vix---xV;
> Vi=VEk=Vvox...xVy
> L =LX=L1x---xI
> Lhy=L5=Lyx---xL
» ' =EK=Ex..-xE

An edge ((x1,...,Xk), (V1,...,Yk)) whose end-points are labelled
by (¢5,...,0%) and (£7,...,07) is happy if (£3,07) € Ry, ,, for
all 1.

‘m 19 Hardness of Approximation
Harald Ricke

Parallel Repetition
If I is regular than also I'.
If I has the uniqueness property than also I'.

Did the gap increase?
> Suppose we have labelling 1, 0> that satisfies just an
«-fraction of edges in 1.

> We transfer this labelling to instance I":
vertex (x1,...,xk) gets label (£1(x1),...,01(xk)),
vertex (v1,...,vk) gets label (£2(yv1),...,02(k)).
» How many edges are happy?
only (x|E|)* out of |[E[¥1! (just an ok fraction)

Does this always work?

m 19 Hardness of Approximation
Harald Racke

Counter Example

Non interactive agreement:
» Two provers A and B

» The verifier generates two random bits b4, and bg, and
sends one to A and one to B.

» Each prover has to answer one of Agy, A1, Bg, By with the
meaning Ag := prover A has been given a bit with value 0.

» The provers win if they give the same answer and if the
answer is correct.

m 19 Hardness of Approximation
Harald Racke

Counter Example

The provers can win with probability at most 1/2.

A B
Ao 0 0 A
1 1 A

Regardless what we do 50% of edges are unhappy!

m 19 Hardness of Approximation
Harald Ricke

: For the first game/coordinate the :
COU hter Exam ple : provers give an answer of the form |
:“A has received...” (A9 or Ay) and :
i for the second an answer of the,

In the repeated game the provers can ! form "B has received...” (B or By). !

also win with probability 1/2: ! If the answer a prover has to!
1 give is about himself a prover can :
A B , answer correctly. If the answer to !

1 be given is about the other prover
0,0 Ag, Bgithe same bit is returned. This |
:means e.g. Prover B answers A1:
1 for the first game iff in the second i

| game he receives a 1-bit. 1

' By this method the provers al-!
Ao, Bo 0,1 1,0 Ao, BO: ways win if Prover A gets the same |
| bit in the first game as Prover B
: in the second game. This happens !
1 with probability 1/2.
A1,B1 1,0 0,1 Ay, Bl: This strategy is not possible for
I the provers if the game is repeated !
1 sequentially. How should prover B :
i know (for her answer in the first |
1,1 Ay, By! game) which bit she is going to re-
| ceive in the second game?

Ap,Bp 0,0

A1,B1 1,1

Boosting

Theorem 109

There is a constant ¢ > 0 such if OPT(I) = |[E|(1 — O) then
ck
OPT(I") < |E"|(1 — &)oL, where L = |L1| + |L»| denotes total

number of labels in I.

proof is highly non-trivial

m 19 Hardness of Approximation
Harald Racke

Hardness of Label Cover

Theorem 110
There are constants c > 0, 6 < 1 s.t. for any k we cannot
distinguish regular instances for Label Cover in which either

» OPT(I) = |E|, or
» OPT(I) = |E|(1 — &)¢k

unless each problem in NP has an algorithm running in time
OmOW)y,

Corollary 111
There is no x-approximation for Label Cover for any constant «.

m 19 Hardness of Approximation
Harald Racke

	Approximation Algorithms
	Introduction to Approximation
	Integer Programs
	Basic Techniques
	Deterministic Rounding
	Rounding the Dual
	Primal Dual Technique
	Greedy
	Randomized Rounding

	Scheduling on Identical Machines
	Local Search
	Greedy

	Rounding Data + Dynamic Programming
	Knapsack
	Scheduling Revisited
	Bin Packing
	Advanced Rounding for Bin Packing

	Randomized Rounding
	MAXSAT
	MAXCUT

	Primal Dual Techniques
	Primal Dual Revisited
	Feedback Vertex Set for Undirected Graphs
	Primal Dual for Shortest Path
	Steiner Forest

	Cuts & Metrics
	Hardness of Approximation

